Documentation

Mathlib.Algebra.Category.GroupCat.Basic

Category instances for Group, AddGroup, CommGroup, and AddCommGroup. #

We introduce the bundled categories:

def AddGroupCat :
Type (u + 1)

The category of additive groups and group morphisms

Equations
Instances For
    def GroupCat :
    Type (u + 1)

    The category of groups and group morphisms.

    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      • One or more equations did not get rendered due to their size.
      instance GroupCat.instGroupα (X : GroupCat) :
      Group X
      Equations
      Equations
      • AddGroupCat.instCoeFunHomAddGroupCatToQuiverToCategoryStructInstAddGroupCatLargeCategoryForAllαAddGroup = { coe := fun (f : X →+ Y) => f }
      Equations
      • GroupCat.instCoeFunHomGroupCatToQuiverToCategoryStructInstGroupCatLargeCategoryForAllαGroup = { coe := fun (f : X →* Y) => f }
      instance AddGroupCat.FunLike_instance (X : AddGroupCat) (Y : AddGroupCat) :
      FunLike (X Y) X Y
      Equations
      instance GroupCat.FunLike_instance (X : GroupCat) (Y : GroupCat) :
      FunLike (X Y) X Y
      Equations
      @[simp]
      theorem AddGroupCat.coe_comp {X : AddGroupCat} {Y : AddGroupCat} {Z : AddGroupCat} {f : X Y} {g : Y Z} :
      @[simp]
      theorem GroupCat.coe_comp {X : GroupCat} {Y : GroupCat} {Z : GroupCat} {f : X Y} {g : Y Z} :
      @[simp]
      theorem GroupCat.forget_map {X : GroupCat} {Y : GroupCat} (f : X Y) :
      (CategoryTheory.forget GroupCat).toPrefunctor.map f = f
      theorem AddGroupCat.ext {X : AddGroupCat} {Y : AddGroupCat} {f : X Y} {g : X Y} (w : ∀ (x : X), f x = g x) :
      f = g
      theorem GroupCat.ext {X : GroupCat} {Y : GroupCat} {f : X Y} {g : X Y} (w : ∀ (x : X), f x = g x) :
      f = g

      Construct a bundled AddGroup from the underlying type and typeclass.

      Equations
      Instances For
        def GroupCat.of (X : Type u) [Group X] :

        Construct a bundled Group from the underlying type and typeclass.

        Equations
        Instances For
          @[simp]
          theorem AddGroupCat.coe_of (R : Type u) [AddGroup R] :
          (AddGroupCat.of R) = R
          @[simp]
          theorem GroupCat.coe_of (R : Type u) [Group R] :
          (GroupCat.of R) = R
          @[simp]
          theorem AddGroupCat.zero_apply (G : AddGroupCat) (H : AddGroupCat) (g : G) :
          0 g = 0
          @[simp]
          theorem GroupCat.one_apply (G : GroupCat) (H : GroupCat) (g : G) :
          1 g = 1
          def AddGroupCat.ofHom {X : Type u} {Y : Type u} [AddGroup X] [AddGroup Y] (f : X →+ Y) :

          Typecheck an AddMonoidHom as a morphism in AddGroup.

          Equations
          Instances For
            def GroupCat.ofHom {X : Type u} {Y : Type u} [Group X] [Group Y] (f : X →* Y) :

            Typecheck a MonoidHom as a morphism in GroupCat.

            Equations
            Instances For
              theorem AddGroupCat.ofHom_apply {X : Type u_1} {Y : Type u_1} [AddGroup X] [AddGroup Y] (f : X →+ Y) (x : X) :
              theorem GroupCat.ofHom_apply {X : Type u_1} {Y : Type u_1} [Group X] [Group Y] (f : X →* Y) (x : X) :
              (GroupCat.ofHom f) x = f x
              instance AddGroupCat.ofUnique (G : Type u_1) [AddGroup G] [i : Unique G] :
              Equations
              instance GroupCat.ofUnique (G : Type u_1) [Group G] [i : Unique G] :
              Equations
              def AddCommGroupCat :
              Type (u + 1)

              The category of additive commutative groups and group morphisms.

              Equations
              Instances For
                def CommGroupCat :
                Type (u + 1)

                The category of commutative groups and group morphisms.

                Equations
                Instances For
                  @[inline, reducible]
                  abbrev Ab :
                  Type (u_1 + 1)

                  Ab is an abbreviation for AddCommGroup, for the sake of mathematicians' sanity.

                  Equations
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Equations
                    • AddCommGroupCat.instCoeFunHomAddCommGroupCatToQuiverToCategoryStructInstAddCommGroupCatLargeCategoryForAllαAddCommGroup = { coe := fun (f : X →+ Y) => f }
                    Equations
                    • CommGroupCat.instCoeFunHomCommGroupCatToQuiverToCategoryStructInstCommGroupCatLargeCategoryForAllαCommGroup = { coe := fun (f : X →* Y) => f }
                    Equations
                    instance CommGroupCat.FunLike_instance (X : CommGroupCat) (Y : CommGroupCat) :
                    FunLike (X Y) X Y
                    Equations
                    @[simp]
                    @[simp]
                    theorem CommGroupCat.coe_comp {X : CommGroupCat} {Y : CommGroupCat} {Z : CommGroupCat} {f : X Y} {g : Y Z} :
                    @[simp]
                    @[simp]
                    theorem CommGroupCat.forget_map {X : CommGroupCat} {Y : CommGroupCat} (f : X Y) :
                    (CategoryTheory.forget CommGroupCat).toPrefunctor.map f = f
                    theorem AddCommGroupCat.ext {X : AddCommGroupCat} {Y : AddCommGroupCat} {f : X Y} {g : X Y} (w : ∀ (x : X), f x = g x) :
                    f = g
                    theorem CommGroupCat.ext {X : CommGroupCat} {Y : CommGroupCat} {f : X Y} {g : X Y} (w : ∀ (x : X), f x = g x) :
                    f = g

                    Construct a bundled AddCommGroup from the underlying type and typeclass.

                    Equations
                    Instances For

                      Construct a bundled CommGroup from the underlying type and typeclass.

                      Equations
                      Instances For
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Equations
                        • One or more equations did not get rendered due to their size.
                        @[simp]
                        theorem AddCommGroupCat.zero_apply (G : AddCommGroupCat) (H : AddCommGroupCat) (g : G) :
                        0 g = 0
                        @[simp]
                        theorem CommGroupCat.one_apply (G : CommGroupCat) (H : CommGroupCat) (g : G) :
                        1 g = 1

                        Typecheck an AddMonoidHom as a morphism in AddCommGroup.

                        Equations
                        Instances For

                          Typecheck a MonoidHom as a morphism in CommGroup.

                          Equations
                          Instances For
                            @[simp]
                            theorem AddCommGroupCat.ofHom_apply {X : Type u_1} {Y : Type u_1} [AddCommGroup X] [AddCommGroup Y] (f : X →+ Y) (x : X) :
                            @[simp]
                            theorem CommGroupCat.ofHom_apply {X : Type u_1} {Y : Type u_1} [CommGroup X] [CommGroup Y] (f : X →* Y) (x : X) :

                            Any element of an abelian group gives a unique morphism from sending 1 to that element.

                            Equations
                            Instances For
                              @[simp]
                              theorem AddCommGroupCat.asHom_apply {G : AddCommGroupCat} (g : G) (i : ) :
                              def AddEquiv.toAddGroupCatIso {X : AddGroupCat} {Y : AddGroupCat} (e : X ≃+ Y) :
                              X Y

                              Build an isomorphism in the category AddGroup from an AddEquiv between AddGroups.

                              Equations
                              Instances For
                                def MulEquiv.toGroupCatIso {X : GroupCat} {Y : GroupCat} (e : X ≃* Y) :
                                X Y

                                Build an isomorphism in the category GroupCat from a MulEquiv between Groups.

                                Equations
                                Instances For
                                  def MulEquiv.toCommGroupCatIso {X : CommGroupCat} {Y : CommGroupCat} (e : X ≃* Y) :
                                  X Y

                                  Build an isomorphism in the category CommGroupCat from a MulEquiv between CommGroups.

                                  Equations
                                  Instances For

                                    Build an addEquiv from an isomorphism in the category AddGroup

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      def CategoryTheory.Iso.groupIsoToMulEquiv {X : GroupCat} {Y : GroupCat} (i : X Y) :
                                      X ≃* Y

                                      Build a MulEquiv from an isomorphism in the category GroupCat.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        Build an AddEquiv from an isomorphism in the category AddCommGroup.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          Build a MulEquiv from an isomorphism in the category CommGroup.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            def addEquivIsoAddGroupIso {X : AddGroupCat} {Y : AddGroupCat} :
                                            X ≃+ Y X Y

                                            "additive equivalences between add_groups are the same as (isomorphic to) isomorphisms in AddGroup

                                            Equations
                                            Instances For
                                              def mulEquivIsoGroupIso {X : GroupCat} {Y : GroupCat} :
                                              X ≃* Y X Y

                                              multiplicative equivalences between Groups are the same as (isomorphic to) isomorphisms in GroupCat

                                              Equations
                                              Instances For

                                                additive equivalences between AddCommGroups are the same as (isomorphic to) isomorphisms in AddCommGroup

                                                Equations
                                                Instances For

                                                  multiplicative equivalences between comm_groups are the same as (isomorphic to) isomorphisms in CommGroup

                                                  Equations
                                                  Instances For

                                                    The (bundled) group of automorphisms of a type is isomorphic to the (bundled) group of permutations.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For

                                                      The (unbundled) group of automorphisms of a type is mul_equiv to the (unbundled) group of permutations.

                                                      Equations
                                                      Instances For
                                                        abbrev GroupCatMaxAux :
                                                        Type ((max u1 u2) + 1)

                                                        An alias for AddGroupCat.{max u v}, to deal around unification issues.

                                                        Equations
                                                        Instances For
                                                          @[inline, reducible]
                                                          abbrev GroupCatMax :
                                                          Type ((max u1 u2) + 1)

                                                          An alias for GroupCat.{max u v}, to deal around unification issues.

                                                          Equations
                                                          Instances For
                                                            @[inline, reducible]
                                                            abbrev AddGroupCatMax :
                                                            Type ((max u1 u2) + 1)

                                                            An alias for AddGroupCat.{max u v}, to deal around unification issues.

                                                            Equations
                                                            Instances For
                                                              abbrev AddCommGroupCatMaxAux :
                                                              Type ((max u1 u2) + 1)

                                                              An alias for AddCommGroupCat.{max u v}, to deal around unification issues.

                                                              Equations
                                                              Instances For
                                                                @[inline, reducible]
                                                                abbrev CommGroupCatMax :
                                                                Type ((max u1 u2) + 1)

                                                                An alias for CommGroupCat.{max u v}, to deal around unification issues.

                                                                Equations
                                                                Instances For
                                                                  @[inline, reducible]
                                                                  abbrev AddCommGroupCatMax :
                                                                  Type ((max u1 u2) + 1)

                                                                  An alias for AddCommGroupCat.{max u v}, to deal around unification issues.

                                                                  Equations
                                                                  Instances For