The category of groups with zero #
This file defines GroupWithZeroCat
, the category of groups with zero.
The category of groups with zero.
Instances For
Equations
- GroupWithZeroCat.instCoeSortGroupWithZeroCatType = CategoryTheory.Bundled.coeSort
Equations
- GroupWithZeroCat.instGroupWithZeroα X = X.str
Equations
Equations
- GroupWithZeroCat.instLargeCategoryGroupWithZeroCat = CategoryTheory.Category.mk
instance
GroupWithZeroCat.instFunLikeHomGroupWithZeroCatToQuiverToCategoryStructInstLargeCategoryGroupWithZeroCatαGroupWithZero
{M : GroupWithZeroCat}
{N : GroupWithZeroCat}
:
Equations
- One or more equations did not get rendered due to their size.
theorem
GroupWithZeroCat.coe_comp
{X : GroupWithZeroCat}
{Y : GroupWithZeroCat}
{Z : GroupWithZeroCat}
{f : X ⟶ Y}
{g : Y ⟶ Z}
:
⇑(CategoryTheory.CategoryStruct.comp f g) = ⇑g ∘ ⇑f
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
GroupWithZeroCat.forget_map
{X : GroupWithZeroCat}
{Y : GroupWithZeroCat}
(f : X ⟶ Y)
:
(CategoryTheory.forget GroupWithZeroCat).toPrefunctor.map f = ⇑f
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
GroupWithZeroCat.Iso.mk_hom
{α : GroupWithZeroCat}
{β : GroupWithZeroCat}
(e : ↑α ≃* ↑β)
:
(GroupWithZeroCat.Iso.mk e).hom = ↑e
@[simp]
theorem
GroupWithZeroCat.Iso.mk_inv
{α : GroupWithZeroCat}
{β : GroupWithZeroCat}
(e : ↑α ≃* ↑β)
:
(GroupWithZeroCat.Iso.mk e).inv = ↑(MulEquiv.symm e)
Constructs an isomorphism of groups with zero from a group isomorphism between them.