Monomorphisms in Module R
#
This file shows that an R
-linear map is a monomorphism in the category of R
-modules
if and only if it is injective, and similarly an epimorphism if and only if it is surjective.
theorem
ModuleCat.ker_eq_bot_of_mono
{R : Type u}
[Ring R]
{X : ModuleCat R}
{Y : ModuleCat R}
(f : X ⟶ Y)
[CategoryTheory.Mono f]
:
LinearMap.ker f = ⊥
theorem
ModuleCat.range_eq_top_of_epi
{R : Type u}
[Ring R]
{X : ModuleCat R}
{Y : ModuleCat R}
(f : X ⟶ Y)
[CategoryTheory.Epi f]
:
def
ModuleCat.uniqueOfEpiZero
{R : Type u}
[Ring R]
{M : Type v}
[AddCommGroup M]
[Module R M]
(X : ModuleCat R)
[h : CategoryTheory.Epi 0]
:
Unique M
If the zero morphism is an epi then the codomain is trivial.
Equations
- ModuleCat.uniqueOfEpiZero X = uniqueOfSurjectiveZero ↑X (_ : Function.Surjective ⇑0)
Instances For
instance
ModuleCat.mono_as_hom'_subtype
{R : Type u}
[Ring R]
{X : ModuleCat R}
(U : Submodule R ↑X)
:
Equations
- (_ : CategoryTheory.Mono (ModuleCat.asHomRight (Submodule.subtype U))) = (_ : CategoryTheory.Mono (ModuleCat.asHomRight (Submodule.subtype U)))
Equations
- (_ : CategoryTheory.Epi (ModuleCat.asHomLeft (Submodule.mkQ U))) = (_ : CategoryTheory.Epi (ModuleCat.asHomLeft (Submodule.mkQ U)))