noncomputable def
ModuleCat.braiding
{R : Type u}
[CommRing R]
(M : ModuleCat R)
(N : ModuleCat R)
:
(implementation) the braiding for R-modules
Equations
- ModuleCat.braiding M N = LinearEquiv.toModuleIso (TensorProduct.comm R ↑M ↑N)
Instances For
@[simp]
theorem
ModuleCat.MonoidalCategory.hexagon_forward
{R : Type u}
[CommRing R]
(X : ModuleCat R)
(Y : ModuleCat R)
(Z : ModuleCat R)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator X Y Z).hom
(CategoryTheory.CategoryStruct.comp (ModuleCat.braiding X (CategoryTheory.MonoidalCategory.tensorObj Y Z)).hom
(CategoryTheory.MonoidalCategory.associator Y Z X).hom) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.MonoidalCategory.tensorHom (ModuleCat.braiding X Y).hom (CategoryTheory.CategoryStruct.id Z))
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator Y X Z).hom
(CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id Y) (ModuleCat.braiding X Z).hom))
@[simp]
theorem
ModuleCat.MonoidalCategory.hexagon_reverse
{R : Type u}
[CommRing R]
(X : ModuleCat R)
(Y : ModuleCat R)
(Z : ModuleCat R)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator X Y Z).inv
(CategoryTheory.CategoryStruct.comp (ModuleCat.braiding (CategoryTheory.MonoidalCategory.tensorObj X Y) Z).hom
(CategoryTheory.MonoidalCategory.associator Z X Y).inv) = CategoryTheory.CategoryStruct.comp
(CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id X) (ModuleCat.braiding Y Z).hom)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator X Z Y).inv
(CategoryTheory.MonoidalCategory.tensorHom (ModuleCat.braiding X Z).hom (CategoryTheory.CategoryStruct.id Y)))
The symmetric monoidal structure on Module R
.
Equations
- ModuleCat.MonoidalCategory.symmetricCategory = CategoryTheory.SymmetricCategory.mk