Simple objects in the category of R
-modules #
We prove simple modules are exactly simple objects in the category of R
-modules.
theorem
simple_iff_isSimpleModule
{R : Type u_1}
{M : Type u_2}
[Ring R]
[AddCommGroup M]
[Module R M]
:
CategoryTheory.Simple (ModuleCat.of R M) ↔ IsSimpleModule R M
theorem
simple_iff_isSimpleModule'
{R : Type u_1}
[Ring R]
(M : ModuleCat R)
:
CategoryTheory.Simple M ↔ IsSimpleModule R ↑M
instance
simple_of_isSimpleModule
{R : Type u_1}
{M : Type u_2}
[Ring R]
[AddCommGroup M]
[Module R M]
[IsSimpleModule R M]
:
A simple module is a simple object in the category of modules.
Equations
- (_ : CategoryTheory.Simple (ModuleCat.of R M)) = (_ : CategoryTheory.Simple (ModuleCat.of R M))
instance
isSimpleModule_of_simple
{R : Type u_1}
[Ring R]
(M : ModuleCat R)
[CategoryTheory.Simple M]
:
IsSimpleModule R ↑M
A simple object in the category of modules is a simple module.
Equations
- (_ : IsSimpleModule R ↑M) = (_ : IsSimpleModule R ↑M)
theorem
simple_of_finrank_eq_one
{R : Type u_1}
[Ring R]
{k : Type u_3}
[Field k]
[Algebra k R]
{V : ModuleCat R}
(h : FiniteDimensional.finrank k ↑V = 1)
:
Any k
-algebra module which is 1-dimensional over k
is simple.