Multivariable polynomials on a type is the left adjoint of the forgetful functor from commutative rings to types.
The free functor Type u ⥤ CommRingCat
sending a type X
to the multivariable (commutative)
polynomials with variables x : X
.
Equations
- CommRingCat.free = CategoryTheory.Functor.mk { obj := fun (α : Type u) => CommRingCat.of (MvPolynomial α ℤ), map := fun {X Y : Type u} (f : X ⟶ Y) => ↑(MvPolynomial.rename f) }
Instances For
@[simp]
theorem
CommRingCat.free_obj_coe
{α : Type u}
:
↑(CommRingCat.free.toPrefunctor.obj α) = MvPolynomial α ℤ
@[simp]
theorem
CommRingCat.free_map_coe
{α : Type u}
{β : Type u}
{f : α → β}
:
⇑(CommRingCat.free.toPrefunctor.map f) = ⇑(MvPolynomial.rename f)
The free-forgetful adjunction for commutative rings.
Equations
- CommRingCat.adj = CategoryTheory.Adjunction.mkOfHomEquiv (CategoryTheory.Adjunction.CoreHomEquiv.mk fun (X : Type u) (R : CommRingCat) => MvPolynomial.homEquiv)
Instances For
Equations
- One or more equations did not get rendered due to their size.