Documentation

Mathlib.Algebra.DirectSum.Finsupp

Results on direct sums and finitely supported functions. #

  1. The linear equivalence between finitely supported functions ι →₀ M and the direct sum of copies of M indexed by ι.
def finsuppLEquivDirectSum (R : Type u) (M : Type v) [Ring R] [AddCommGroup M] [Module R M] (ι : Type u_1) [DecidableEq ι] :
(ι →₀ M) ≃ₗ[R] DirectSum ι fun (x : ι) => M

The finitely supported functions ι →₀ M are in linear equivalence with the direct sum of copies of M indexed by ι.

Equations
Instances For
    @[simp]
    theorem finsuppLEquivDirectSum_single (R : Type u) (M : Type v) [Ring R] [AddCommGroup M] [Module R M] (ι : Type u_1) [DecidableEq ι] (i : ι) (m : M) :
    (finsuppLEquivDirectSum R M ι) (Finsupp.single i m) = (DirectSum.lof R ι (fun (i : ι) => M) i) m
    @[simp]
    theorem finsuppLEquivDirectSum_symm_lof (R : Type u) (M : Type v) [Ring R] [AddCommGroup M] [Module R M] (ι : Type u_1) [DecidableEq ι] (i : ι) (m : M) :
    (LinearEquiv.symm (finsuppLEquivDirectSum R M ι)) ((DirectSum.lof R ι (fun (x : ι) => M) i) m) = Finsupp.single i m