Results on direct sums and finitely supported functions. #
- The linear equivalence between finitely supported functions
ι →₀ M
and the direct sum of copies ofM
indexed byι
.
def
finsuppLEquivDirectSum
(R : Type u)
(M : Type v)
[Ring R]
[AddCommGroup M]
[Module R M]
(ι : Type u_1)
[DecidableEq ι]
:
The finitely supported functions ι →₀ M
are in linear equivalence with the direct sum of
copies of M indexed by ι.
Equations
Instances For
@[simp]
theorem
finsuppLEquivDirectSum_single
(R : Type u)
(M : Type v)
[Ring R]
[AddCommGroup M]
[Module R M]
(ι : Type u_1)
[DecidableEq ι]
(i : ι)
(m : M)
:
(finsuppLEquivDirectSum R M ι) (Finsupp.single i m) = (DirectSum.lof R ι (fun (i : ι) => M) i) m
@[simp]
theorem
finsuppLEquivDirectSum_symm_lof
(R : Type u)
(M : Type v)
[Ring R]
[AddCommGroup M]
[Module R M]
(ι : Type u_1)
[DecidableEq ι]
(i : ι)
(m : M)
:
(LinearEquiv.symm (finsuppLEquivDirectSum R M ι)) ((DirectSum.lof R ι (fun (x : ι) => M) i) m) = Finsupp.single i m