Free constructions #
Main definitions #
FreeMagma α: free magma (structure with binary operation without any axioms) over alphabetα, defined inductively, with traversable instance and decidable equality.MagmaAssocQuotient α: quotient of a magmaαby the associativity equivalence relation.FreeSemigroup α: free semigroup over alphabetα, defined as a structure with two fieldshead : αandtail : List α(i.e. nonempty lists), with traversable instance and decidable equality.FreeMagmaAssocQuotientEquiv α: isomorphism betweenMagmaAssocQuotient (FreeMagma α)andFreeSemigroup α.FreeMagma.lift: the universal property of the free magma, expressing its adjointness.
Free nonabelian additive magma over a given alphabet.
- of: {α : Type u} → α → FreeAddMagma α
- add: {α : Type u} → FreeAddMagma α → FreeAddMagma α → FreeAddMagma α
Instances For
Equations
- instDecidableEqFreeAddMagma = decEqFreeAddMagma✝
Equations
- instDecidableEqFreeMagma = decEqFreeMagma✝
Equations
- FreeAddMagma.instInhabitedFreeAddMagma = { default := FreeAddMagma.of default }
Equations
- FreeMagma.instInhabitedFreeMagma = { default := FreeMagma.of default }
Equations
- FreeAddMagma.instAddFreeAddMagma = { add := FreeAddMagma.add }
Recursor for FreeAddMagma using x + y instead of
FreeAddMagma.add x y.
Equations
- FreeAddMagma.recOnAdd x ih1 ih2 = FreeAddMagma.recOn x ih1 ih2
Instances For
Recursor for FreeMagma using x * y instead of FreeMagma.mul x y.
Equations
- FreeMagma.recOnMul x ih1 ih2 = FreeMagma.recOn x ih1 ih2
Instances For
Lifts a function α → β to a magma homomorphism FreeMagma α → β given a magma β.
Equations
- FreeMagma.liftAux f (FreeMagma.of x_1) = f x_1
- FreeMagma.liftAux f (FreeMagma.mul x_1 y) = FreeMagma.liftAux f x_1 * FreeMagma.liftAux f y
Instances For
Lifts a function α → β to an additive magma homomorphism FreeAddMagma α → β given
an additive magma β.
Equations
- FreeAddMagma.liftAux f (FreeAddMagma.of x_1) = f x_1
- FreeAddMagma.liftAux f (FreeAddMagma.add x_1 y) = FreeAddMagma.liftAux f x_1 + FreeAddMagma.liftAux f y
Instances For
The universal property of the free additive magma expressing its adjointness.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The unique additive magma homomorphism FreeAddMagma α → FreeAddMagma β that sends
each of x to of (f x).
Equations
- FreeAddMagma.map f = FreeAddMagma.lift (FreeAddMagma.of ∘ f)
Instances For
Equations
- FreeAddMagma.instMonadFreeAddMagma = Monad.mk
Equations
- FreeMagma.instMonadFreeMagma = Monad.mk
Recursor on FreeAddMagma using pure instead of of.
Equations
- FreeAddMagma.recOnPure x ih1 ih2 = FreeAddMagma.recOnAdd x ih1 ih2
Instances For
Recursor on FreeMagma using pure instead of of.
Equations
- FreeMagma.recOnPure x ih1 ih2 = FreeMagma.recOnMul x ih1 ih2
Instances For
Equations
Equations
FreeMagma is traversable.
Equations
- FreeMagma.traverse F (FreeMagma.of x_1) = FreeMagma.of <$> F x_1
- FreeMagma.traverse F (FreeMagma.mul x_1 y) = Seq.seq ((fun (x x_2 : FreeMagma β) => x * x_2) <$> FreeMagma.traverse F x_1) fun (x : Unit) => FreeMagma.traverse F y
Instances For
FreeAddMagma is traversable.
Equations
- FreeAddMagma.traverse F (FreeAddMagma.of x_1) = FreeAddMagma.of <$> F x_1
- FreeAddMagma.traverse F (FreeAddMagma.add x_1 y) = Seq.seq ((fun (x x_2 : FreeAddMagma β) => x + x_2) <$> FreeAddMagma.traverse F x_1) fun (x : Unit) => FreeAddMagma.traverse F y
Instances For
Representation of an element of a free magma.
Equations
- FreeMagma.repr (FreeMagma.of x_1) = repr x_1
- FreeMagma.repr (FreeMagma.mul x_1 y) = Std.Format.text "( " ++ FreeMagma.repr x_1 ++ Std.Format.text " * " ++ FreeMagma.repr y ++ Std.Format.text " )"
Instances For
Representation of an element of a free additive magma.
Equations
- FreeAddMagma.repr (FreeAddMagma.of x_1) = repr x_1
- FreeAddMagma.repr (FreeAddMagma.add x_1 y) = Std.Format.text "( " ++ FreeAddMagma.repr x_1 ++ Std.Format.text " + " ++ FreeAddMagma.repr y ++ Std.Format.text " )"
Instances For
Equations
- instReprFreeAddMagma = { reprPrec := fun (o : FreeAddMagma α) (x : ℕ) => FreeAddMagma.repr o }
Equations
- instReprFreeMagma = { reprPrec := fun (o : FreeMagma α) (x : ℕ) => FreeMagma.repr o }
Length of an element of a free magma.
Equations
- FreeMagma.length (FreeMagma.of x_1) = 1
- FreeMagma.length (FreeMagma.mul x_1 y) = FreeMagma.length x_1 + FreeMagma.length y
Instances For
Length of an element of a free additive magma.
Equations
- FreeAddMagma.length (FreeAddMagma.of x_1) = 1
- FreeAddMagma.length (FreeAddMagma.add x_1 y) = FreeAddMagma.length x_1 + FreeAddMagma.length y
Instances For
Additive semigroup quotient of an additive magma.
Equations
Instances For
Semigroup quotient of a magma.
Equations
Instances For
Equations
- AddMagma.FreeAddSemigroup.instAddSemigroupAssocQuotient = AddSemigroup.mk (_ : ∀ (x y z : AddMagma.FreeAddSemigroup α), x + y + z = x + (y + z))
Equations
- Magma.AssocQuotient.instSemigroupAssocQuotient = Semigroup.mk (_ : ∀ (x y z : Magma.AssocQuotient α), x * y * z = x * (y * z))
Embedding from additive magma to its free additive semigroup.
Equations
- AddMagma.FreeAddSemigroup.of = { toFun := Quot.mk (AddMagma.AssocRel α), map_add' := (_ : ∀ (_x _y : α), Quot.mk (AddMagma.AssocRel α) (_x + _y) = Quot.mk (AddMagma.AssocRel α) (_x + _y)) }
Instances For
Embedding from magma to its free semigroup.
Equations
- Magma.AssocQuotient.of = { toFun := Quot.mk (Magma.AssocRel α), map_mul' := (_ : ∀ (_x _y : α), Quot.mk (Magma.AssocRel α) (_x * _y) = Quot.mk (Magma.AssocRel α) (_x * _y)) }
Instances For
Equations
- AddMagma.FreeAddSemigroup.instInhabitedAssocQuotient = { default := AddMagma.FreeAddSemigroup.of default }
Equations
- Magma.AssocQuotient.instInhabitedAssocQuotient = { default := Magma.AssocQuotient.of default }
Lifts an additive magma homomorphism α → β to an
additive semigroup homomorphism AddMagma.AssocQuotient α → β given an additive semigroup β.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Lifts a magma homomorphism α → β to a semigroup homomorphism Magma.AssocQuotient α → β
given a semigroup β.
Equations
- One or more equations did not get rendered due to their size.
Instances For
From an additive magma homomorphism α → β to an additive semigroup homomorphism
AddMagma.AssocQuotient α → AddMagma.AssocQuotient β.
Equations
- AddMagma.FreeAddSemigroup.map f = AddMagma.FreeAddSemigroup.lift (AddHom.comp AddMagma.FreeAddSemigroup.of f)
Instances For
From a magma homomorphism α →ₙ* β to a semigroup homomorphism
Magma.AssocQuotient α →ₙ* Magma.AssocQuotient β.
Equations
- Magma.AssocQuotient.map f = Magma.AssocQuotient.lift (MulHom.comp Magma.AssocQuotient.of f)
Instances For
Free additive semigroup over a given alphabet.
- head : α
The head of the element
- tail : List α
The tail of the element
Instances For
Free semigroup over a given alphabet.
- head : α
The head of the element
- tail : List α
The tail of the element
Instances For
Equations
- FreeAddSemigroup.instAddSemigroupFreeAddSemigroup = AddSemigroup.mk (_ : ∀ (_L1 _L2 _L3 : FreeAddSemigroup α), _L1 + _L2 + _L3 = _L1 + (_L2 + _L3))
Equations
- FreeSemigroup.instSemigroupFreeSemigroup = Semigroup.mk (_ : ∀ (_L1 _L2 _L3 : FreeSemigroup α), _L1 * _L2 * _L3 = _L1 * (_L2 * _L3))
The embedding α → FreeAddSemigroup α.
Equations
- FreeAddSemigroup.of x = { head := x, tail := [] }
Instances For
The embedding α → FreeSemigroup α.
Equations
- FreeSemigroup.of x = { head := x, tail := [] }
Instances For
Length of an element of free additive semigroup
Equations
- FreeAddSemigroup.length x = List.length x.tail + 1
Instances For
Length of an element of free semigroup.
Equations
- FreeSemigroup.length x = List.length x.tail + 1
Instances For
Equations
- FreeAddSemigroup.instInhabitedFreeAddSemigroup = { default := FreeAddSemigroup.of default }
Equations
- FreeSemigroup.instInhabitedFreeSemigroup = { default := FreeSemigroup.of default }
Recursor for free additive semigroup using of and +.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Recursor for free semigroup using of and *.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Lifts a function α → β to an additive semigroup
homomorphism FreeAddSemigroup α → β given an additive semigroup β.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Lifts a function α → β to a semigroup homomorphism FreeSemigroup α → β given
a semigroup β.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The unique additive semigroup homomorphism that sends of x to of (f x).
Equations
- FreeAddSemigroup.map f = FreeAddSemigroup.lift (FreeAddSemigroup.of ∘ f)
Instances For
The unique semigroup homomorphism that sends of x to of (f x).
Equations
- FreeSemigroup.map f = FreeSemigroup.lift (FreeSemigroup.of ∘ f)
Instances For
Equations
Equations
- FreeSemigroup.instMonadFreeSemigroup = Monad.mk
Recursor that uses pure instead of of.
Equations
- FreeAddSemigroup.recOnPure x ih1 ih2 = FreeAddSemigroup.recOnAdd x ih1 ih2
Instances For
Recursor that uses pure instead of of.
Equations
- FreeSemigroup.recOnPure x ih1 ih2 = FreeSemigroup.recOnMul x ih1 ih2
Instances For
Equations
FreeAddSemigroup is traversable.
Equations
- One or more equations did not get rendered due to their size.
Instances For
FreeSemigroup is traversable.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The canonical additive morphism from FreeAddMagma α to FreeAddSemigroup α.
Equations
- FreeAddMagma.toFreeAddSemigroup = FreeAddMagma.lift FreeAddSemigroup.of
Instances For
The canonical multiplicative morphism from FreeMagma α to FreeSemigroup α.
Equations
- FreeMagma.toFreeSemigroup = FreeMagma.lift FreeSemigroup.of
Instances For
Isomorphism between AddMagma.AssocQuotient (FreeAddMagma α) and
FreeAddSemigroup α.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Isomorphism between Magma.AssocQuotient (FreeMagma α) and FreeSemigroup α.
Equations
- One or more equations did not get rendered due to their size.