Documentation

Mathlib.Algebra.GroupPower.Hom

Power as a monoid hom #

def nsmulAddMonoidHom {α : Type u_1} [AddCommMonoid α] (n : ) :
α →+ α

Multiplication by a natural n on a commutative additive monoid, considered as a morphism of additive monoids.

Equations
Instances For
    theorem nsmulAddMonoidHom.proof_1 {α : Type u_1} [AddCommMonoid α] (n : ) :
    n 0 = 0
    @[simp]
    theorem powMonoidHom_apply {α : Type u_1} [CommMonoid α] (n : ) :
    ∀ (x : α), (powMonoidHom n) x = x ^ n
    @[simp]
    theorem nsmulAddMonoidHom_apply {α : Type u_1} [AddCommMonoid α] (n : ) :
    ∀ (x : α), (nsmulAddMonoidHom n) x = n x
    def powMonoidHom {α : Type u_1} [CommMonoid α] (n : ) :
    α →* α

    The nth power map on a commutative monoid for a natural n, considered as a morphism of monoids.

    Equations
    • powMonoidHom n = { toOneHom := { toFun := fun (x : α) => x ^ n, map_one' := (_ : 1 ^ n = 1) }, map_mul' := (_ : ∀ (a b : α), (a * b) ^ n = a ^ n * b ^ n) }
    Instances For
      def zsmulAddGroupHom {α : Type u_1} [SubtractionCommMonoid α] (n : ) :
      α →+ α

      Multiplication by an integer n on a commutative additive group, considered as an additive group homomorphism.

      Equations
      Instances For
        theorem zsmulAddGroupHom.proof_1 {α : Type u_1} [SubtractionCommMonoid α] (n : ) :
        n 0 = 0
        @[simp]
        theorem zpowGroupHom_apply {α : Type u_1} [DivisionCommMonoid α] (n : ) :
        ∀ (x : α), (zpowGroupHom n) x = x ^ n
        @[simp]
        theorem zsmulAddGroupHom_apply {α : Type u_1} [SubtractionCommMonoid α] (n : ) :
        ∀ (x : α), (zsmulAddGroupHom n) x = n x
        def zpowGroupHom {α : Type u_1} [DivisionCommMonoid α] (n : ) :
        α →* α

        The n-th power map (for an integer n) on a commutative group, considered as a group homomorphism.

        Equations
        • zpowGroupHom n = { toOneHom := { toFun := fun (x : α) => x ^ n, map_one' := (_ : 1 ^ n = 1) }, map_mul' := (_ : ∀ (a b : α), (a * b) ^ n = a ^ n * b ^ n) }
        Instances For