Short exact sequences, and splittings. #
CategoryTheory.ShortExact f g
is the proposition that 0 ⟶ A -f⟶ B -g⟶ C ⟶ 0
is an exact
sequence.
We define when a short exact sequence is left-split, right-split, and split.
See also #
In Mathlib.Algebra.Homology.ShortExact.Abelian
we show that in an abelian category a left-split
short exact sequences admits a splitting.
If f : A ⟶ B
and g : B ⟶ C
then short_exact f g
is the proposition saying
the resulting diagram 0 ⟶ A ⟶ B ⟶ C ⟶ 0
is an exact sequence.
- mono : CategoryTheory.Mono f
- epi : CategoryTheory.Epi g
- exact : CategoryTheory.Exact f g
Instances For
An exact sequence A -f⟶ B -g⟶ C
is left split
if there exists a morphism φ : B ⟶ A
such that f ≫ φ = 𝟙 A
and g
is epi.
Such a sequence is automatically short exact (i.e., f
is mono).
- left_split : ∃ (φ : B ⟶ A), CategoryTheory.CategoryStruct.comp f φ = CategoryTheory.CategoryStruct.id A
- epi : CategoryTheory.Epi g
- exact : CategoryTheory.Exact f g
Instances For
An exact sequence A -f⟶ B -g⟶ C
is right split
if there exists a morphism φ : C ⟶ B
such that f ≫ φ = 𝟙 A
and f
is mono.
Such a sequence is automatically short exact (i.e., g
is epi).
- right_split : ∃ (χ : C ⟶ B), CategoryTheory.CategoryStruct.comp χ g = CategoryTheory.CategoryStruct.id C
- mono : CategoryTheory.Mono f
- exact : CategoryTheory.Exact f g
Instances For
An exact sequence A -f⟶ B -g⟶ C
is split if there exist
φ : B ⟶ A
and χ : C ⟶ B
such that:
f ≫ φ = 𝟙 A
χ ≫ g = 𝟙 C
f ≫ g = 0
χ ≫ φ = 0
φ ≫ f + g ≫ χ = 𝟙 B
Such a sequence is automatically short exact (i.e., f
is mono and g
is epi).
- split : ∃ (φ : B ⟶ A) (χ : C ⟶ B), CategoryTheory.CategoryStruct.comp f φ = CategoryTheory.CategoryStruct.id A ∧ CategoryTheory.CategoryStruct.comp χ g = CategoryTheory.CategoryStruct.id C ∧ CategoryTheory.CategoryStruct.comp f g = 0 ∧ CategoryTheory.CategoryStruct.comp χ φ = 0 ∧ CategoryTheory.CategoryStruct.comp φ f + CategoryTheory.CategoryStruct.comp g χ = CategoryTheory.CategoryStruct.id B
Instances For
The sequence A ⟶ A ⊞ B ⟶ B
is exact.
The sequence B ⟶ A ⊞ B ⟶ A
is exact.
A splitting of a sequence A -f⟶ B -g⟶ C
is an isomorphism
to the short exact sequence 0 ⟶ A ⟶ A ⊞ C ⟶ C ⟶ 0
such that
the vertical maps on the left and the right are the identity.
- comp_iso_eq_inl : CategoryTheory.CategoryStruct.comp f s.iso.hom = CategoryTheory.Limits.biprod.inl
- iso_comp_snd_eq : CategoryTheory.CategoryStruct.comp s.iso.hom CategoryTheory.Limits.biprod.snd = g
Instances For
If h
is a splitting of A -f⟶ B -g⟶ C
,
then h.section : C ⟶ B
is the morphism satisfying h.section ≫ g = 𝟙 C
.
Equations
- CategoryTheory.Splitting.section h = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inr h.iso.inv
Instances For
If h
is a splitting of A -f⟶ B -g⟶ C
,
then h.retraction : B ⟶ A
is the morphism satisfying f ≫ h.retraction = 𝟙 A
.
Equations
- CategoryTheory.Splitting.retraction h = CategoryTheory.CategoryStruct.comp h.iso.hom CategoryTheory.Limits.biprod.fst
Instances For
The retraction in a splitting is a split mono.
Equations
Instances For
The section in a splitting is a split epi.
Equations
Instances For
A short exact sequence of the form X -f⟶ Y -0⟶ Z
where f
is an iso and Z
is zero
has a splitting.
Equations
- One or more equations did not get rendered due to their size.