Documentation

Mathlib.Algebra.Homology.ShortExact.Preadditive

Short exact sequences, and splittings. #

CategoryTheory.ShortExact f g is the proposition that 0 ⟶ A -f⟶ B -g⟶ C ⟶ 0 is an exact sequence.

We define when a short exact sequence is left-split, right-split, and split.

See also #

In Mathlib.Algebra.Homology.ShortExact.Abelian we show that in an abelian category a left-split short exact sequences admits a splitting.

If f : A ⟶ B and g : B ⟶ C then short_exact f g is the proposition saying the resulting diagram 0 ⟶ A ⟶ B ⟶ C ⟶ 0 is an exact sequence.

Instances For

    An exact sequence A -f⟶ B -g⟶ C is left split if there exists a morphism φ : B ⟶ A such that f ≫ φ = 𝟙 A and g is epi.

    Such a sequence is automatically short exact (i.e., f is mono).

    Instances For

      An exact sequence A -f⟶ B -g⟶ C is right split if there exists a morphism φ : C ⟶ B such that f ≫ φ = 𝟙 A and f is mono.

      Such a sequence is automatically short exact (i.e., g is epi).

      Instances For
        structure CategoryTheory.Split {𝒜 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒜] {A : 𝒜} {B : 𝒜} {C : 𝒜} (f : A B) (g : B C) [CategoryTheory.Preadditive 𝒜] :

        An exact sequence A -f⟶ B -g⟶ C is split if there exist φ : B ⟶ A and χ : C ⟶ B such that:

        • f ≫ φ = 𝟙 A
        • χ ≫ g = 𝟙 C
        • f ≫ g = 0
        • χ ≫ φ = 0
        • φ ≫ f + g ≫ χ = 𝟙 B

        Such a sequence is automatically short exact (i.e., f is mono and g is epi).

        Instances For
          theorem CategoryTheory.Split.map {𝒜 : Type u_2} {ℬ : Type u_3} [CategoryTheory.Category.{u_4, u_2} 𝒜] [CategoryTheory.Preadditive 𝒜] [CategoryTheory.Category.{u_5, u_3} ] [CategoryTheory.Preadditive ] (F : CategoryTheory.Functor 𝒜 ) [CategoryTheory.Functor.Additive F] {A : 𝒜} {B : 𝒜} {C : 𝒜} {f : A B} {g : B C} (h : CategoryTheory.Split f g) :
          CategoryTheory.Split (F.map f) (F.map g)
          theorem CategoryTheory.exact_inl_snd {𝒜 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒜] [CategoryTheory.Preadditive 𝒜] [CategoryTheory.Limits.HasKernels 𝒜] [CategoryTheory.Limits.HasImages 𝒜] [CategoryTheory.Limits.HasBinaryBiproducts 𝒜] (A : 𝒜) (B : 𝒜) :
          CategoryTheory.Exact CategoryTheory.Limits.biprod.inl CategoryTheory.Limits.biprod.snd

          The sequence A ⟶ A ⊞ B ⟶ B is exact.

          theorem CategoryTheory.exact_inr_fst {𝒜 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒜] [CategoryTheory.Preadditive 𝒜] [CategoryTheory.Limits.HasKernels 𝒜] [CategoryTheory.Limits.HasImages 𝒜] [CategoryTheory.Limits.HasBinaryBiproducts 𝒜] (A : 𝒜) (B : 𝒜) :
          CategoryTheory.Exact CategoryTheory.Limits.biprod.inr CategoryTheory.Limits.biprod.fst

          The sequence B ⟶ A ⊞ B ⟶ A is exact.

          structure CategoryTheory.Splitting {𝒜 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒜] {A : 𝒜} {B : 𝒜} {C : 𝒜} (f : A B) (g : B C) [CategoryTheory.Limits.HasZeroMorphisms 𝒜] [CategoryTheory.Limits.HasBinaryBiproducts 𝒜] :
          Type u_2

          A splitting of a sequence A -f⟶ B -g⟶ C is an isomorphism to the short exact sequence 0 ⟶ A ⟶ A ⊞ C ⟶ C ⟶ 0 such that the vertical maps on the left and the right are the identity.

          Instances For
            @[simp]
            @[simp]
            @[simp]
            theorem CategoryTheory.Splitting.inl_comp_iso_eq {𝒜 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒜] {A : 𝒜} {B : 𝒜} {C : 𝒜} {f : A B} {g : B C} [CategoryTheory.Limits.HasZeroMorphisms 𝒜] [CategoryTheory.Limits.HasBinaryBiproducts 𝒜] (h : CategoryTheory.Splitting f g) :
            CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl h.iso.inv = f
            @[simp]
            theorem CategoryTheory.Splitting.iso_comp_eq_snd {𝒜 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒜] {A : 𝒜} {B : 𝒜} {C : 𝒜} {f : A B} {g : B C} [CategoryTheory.Limits.HasZeroMorphisms 𝒜] [CategoryTheory.Limits.HasBinaryBiproducts 𝒜] (h : CategoryTheory.Splitting f g) :
            CategoryTheory.CategoryStruct.comp h.iso.inv g = CategoryTheory.Limits.biprod.snd

            If h is a splitting of A -f⟶ B -g⟶ C, then h.section : C ⟶ B is the morphism satisfying h.section ≫ g = 𝟙 C.

            Equations
            Instances For

              If h is a splitting of A -f⟶ B -g⟶ C, then h.retraction : B ⟶ A is the morphism satisfying f ≫ h.retraction = 𝟙 A.

              Equations
              Instances For

                A short exact sequence of the form X -f⟶ Y -0⟶ Z where f is an iso and Z is zero has a splitting.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For