Cartan subalgebras #
Cartan subalgebras are one of the most important concepts in Lie theory. We define them here. The standard example is the set of diagonal matrices in the Lie algebra of matrices.
Main definitions #
LieSubmodule.IsUcsLimit
LieSubalgebra.IsCartanSubalgebra
LieSubalgebra.isCartanSubalgebra_iff_isUcsLimit
Tags #
lie subalgebra, normalizer, idealizer, cartan subalgebra
Given a Lie module M
of a Lie algebra L
, LieSubmodule.IsUcsLimit
is the proposition
that a Lie submodule N ⊆ M
is the limiting value for the upper central series.
This is a characteristic property of Cartan subalgebras with the roles of L
, M
, N
played by
H
, L
, H
, respectively. See LieSubalgebra.isCartanSubalgebra_iff_isUcsLimit
.
Equations
- LieSubmodule.IsUcsLimit N = ∃ (k : ℕ), ∀ (l : ℕ), k ≤ l → LieSubmodule.ucs l ⊥ = N
Instances For
A Cartan subalgebra is a nilpotent, self-normalizing subalgebra.
A splitting Cartan subalgebra can be defined by mixing in LieModule.IsTriangularizable R H L
.
- nilpotent : LieAlgebra.IsNilpotent R ↥H
- self_normalizing : LieSubalgebra.normalizer H = H
Instances
Equations
- (_ : LieAlgebra.IsNilpotent R ↥H) = (_ : LieAlgebra.IsNilpotent R ↥H)
A nilpotent Lie algebra is its own Cartan subalgebra.