Documentation

Mathlib.Algebra.Module.LinearMap.Basic

(Semi)linear maps #

In this file we define

We then provide LinearMap with the following instances:

Implementation notes #

To ensure that composition works smoothly for semilinear maps, we use the typeclasses RingHomCompTriple, RingHomInvPair and RingHomSurjective from Mathlib.Algebra.Ring.CompTypeclasses.

Notation #

TODO #

Tags #

linear map

structure IsLinearMap (R : Type u) {M : Type v} {M₂ : Type w} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] (f : MM₂) :

A map f between modules over a semiring is linear if it satisfies the two properties f (x + y) = f x + f y and f (c • x) = c • f x. The predicate IsLinearMap R f asserts this property. A bundled version is available with LinearMap, and should be favored over IsLinearMap most of the time.

  • map_add : ∀ (x y : M), f (x + y) = f x + f y

    A linear map preserves addition.

  • map_smul : ∀ (c : R) (x : M), f (c x) = c f x

    A linear map preserves scalar multiplication.

Instances For
    structure LinearMap {R : Type u_17} {S : Type u_18} [Semiring R] [Semiring S] (σ : R →+* S) (M : Type u_19) (M₂ : Type u_20) [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] extends AddHom :
    Type (max u_19 u_20)

    A map f between an R-module and an S-module over a ring homomorphism σ : R →+* S is semilinear if it satisfies the two properties f (x + y) = f x + f y and f (c • x) = (σ c) • f x. Elements of LinearMap σ M M₂ (available under the notation M →ₛₗ[σ] M₂) are bundled versions of such maps. For plain linear maps (i.e. for which σ = RingHom.id R), the notation M →ₗ[R] M₂ is available. An unbundled version of plain linear maps is available with the predicate IsLinearMap, but it should be avoided most of the time.

    • toFun : MM₂
    • map_add' : ∀ (x y : M), self.toAddHom.toFun (x + y) = self.toAddHom.toFun x + self.toAddHom.toFun y
    • map_smul' : ∀ (r : R) (x : M), self.toAddHom.toFun (r x) = σ r self.toAddHom.toFun x

      A linear map preserves scalar multiplication. We prefer the spelling _root_.map_smul instead.

    Instances For

      M →ₛₗ[σ] N is the type of σ-semilinear maps from M to N.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        M →ₗ[R] N is the type of R-linear maps from M to N.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          M →ₗ⋆[R] N is the type of R-conjugate-linear maps from M to N.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            class SemilinearMapClass (F : Type u_17) {R : outParam (Type u_18)} {S : outParam (Type u_19)} [Semiring R] [Semiring S] (σ : outParam (R →+* S)) (M : outParam (Type u_20)) (M₂ : outParam (Type u_21)) [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] [FunLike F M M₂] extends AddHomClass :

            SemilinearMapClass F σ M M₂ asserts F is a type of bundled σ-semilinear maps M → M₂.

            See also LinearMapClass F R M M₂ for the case where σ is the identity map on R.

            A map f between an R-module and an S-module over a ring homomorphism σ : R →+* S is semilinear if it satisfies the two properties f (x + y) = f x + f y and f (c • x) = (σ c) • f x.

            • map_add : ∀ (f : F) (x y : M), f (x + y) = f x + f y
            • map_smulₛₗ : ∀ (f : F) (r : R) (x : M), f (r x) = σ r f x

              A semilinear map preserves scalar multiplication up to some ring homomorphism σ. See also _root_.map_smul for the case where σ is the identity.

            Instances
              @[inline, reducible]
              abbrev LinearMapClass (F : Type u_17) (R : outParam (Type u_18)) (M : Type u_19) (M₂ : Type u_20) [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [FunLike F M M₂] :

              LinearMapClass F R M M₂ asserts F is a type of bundled R-linear maps M → M₂.

              This is an abbreviation for SemilinearMapClass F (RingHom.id R) M M₂.

              Equations
              Instances For
                instance SemilinearMapClass.instAddMonoidHomClass {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} (F : Type u_17) [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} [FunLike F M M₃] [SemilinearMapClass F σ M M₃] :
                Equations
                instance SemilinearMapClass.distribMulActionHomClass {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} (F : Type u_17) [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [FunLike F M M₂] [LinearMapClass F R M M₂] :
                Equations
                theorem SemilinearMapClass.map_smul_inv {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} {F : Type u_17} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : F) [FunLike F M M₃] [SemilinearMapClass F σ M M₃] {σ' : S →+* R} [RingHomInvPair σ σ'] (c : S) (x : M) :
                c f x = f (σ' c x)
                @[inline, reducible]
                abbrev SemilinearMapClass.semilinearMap {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} {F : Type u_17} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : F) [FunLike F M M₃] [SemilinearMapClass F σ M M₃] :
                M →ₛₗ[σ] M₃

                Reinterpret an element of a type of semilinear maps as a semilinear map.

                Equations
                Instances For
                  @[inline, reducible]
                  abbrev LinearMapClass.linearMap {R : Type u_1} {M₁ : Type u_10} {M₂ : Type u_11} {F : Type u_17} [Semiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] (f : F) [FunLike F M₁ M₂] [LinearMapClass F R M₁ M₂] :
                  M₁ →ₗ[R] M₂

                  Reinterpret an element of a type of linear maps as a linear map.

                  Equations
                  Instances For
                    instance LinearMap.instFunLike {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} :
                    FunLike (M →ₛₗ[σ] M₃) M M₃
                    Equations
                    • One or more equations did not get rendered due to their size.
                    instance LinearMap.semilinearMapClass {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} :
                    SemilinearMapClass (M →ₛₗ[σ] M₃) σ M M₃
                    Equations
                    def LinearMap.toDistribMulActionHom {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] (f : M →ₗ[R] M₂) :
                    M →+[R] M₂

                    The DistribMulActionHom underlying a LinearMap.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem LinearMap.coe_toAddHom {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) :
                      f.toAddHom = f
                      theorem LinearMap.toFun_eq_coe {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} {f : M →ₛₗ[σ] M₃} :
                      f.toFun = f
                      theorem LinearMap.ext {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} {f : M →ₛₗ[σ] M₃} {g : M →ₛₗ[σ] M₃} (h : ∀ (x : M), f x = g x) :
                      f = g
                      def LinearMap.copy {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) (f' : MM₃) (h : f' = f) :
                      M →ₛₗ[σ] M₃

                      Copy of a LinearMap with a new toFun equal to the old one. Useful to fix definitional equalities.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem LinearMap.coe_copy {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) (f' : MM₃) (h : f' = f) :
                        (LinearMap.copy f f' h) = f'
                        theorem LinearMap.copy_eq {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) (f' : MM₃) (h : f' = f) :
                        LinearMap.copy f f' h = f
                        @[simp]
                        theorem LinearMap.coe_mk {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : AddHom M M₃) (h : ∀ (r : R) (x : M), f.toFun (r x) = σ r f.toFun x) :
                        { toAddHom := f, map_smul' := h } = f
                        @[simp]
                        theorem LinearMap.coe_addHom_mk {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : AddHom M M₃) (h : ∀ (r : R) (x : M), f.toFun (r x) = σ r f.toFun x) :
                        { toAddHom := f, map_smul' := h } = f
                        def LinearMap.id {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] :

                        Identity map as a LinearMap

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem LinearMap.id_apply {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] (x : M) :
                          LinearMap.id x = x
                          @[simp]
                          theorem LinearMap.id_coe {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] :
                          LinearMap.id = id
                          @[simp]
                          theorem LinearMap.id'_apply {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] {σ : R →+* R} [RingHomId σ] (x : M) :
                          LinearMap.id' x = x
                          def LinearMap.id' {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] {σ : R →+* R} [RingHomId σ] :

                          A generalisation of LinearMap.id that constructs the identity function as a σ-semilinear map for any ring homomorphism σ which we know is the identity.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem LinearMap.id'_coe {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] {σ : R →+* R} [RingHomId σ] :
                            LinearMap.id' = id
                            theorem LinearMap.isLinear {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] (fₗ : M →ₗ[R] M₂) :
                            IsLinearMap R fₗ
                            theorem LinearMap.coe_injective {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} :
                            Function.Injective DFunLike.coe
                            theorem LinearMap.congr_arg {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} {f : M →ₛₗ[σ] M₃} {x : M} {x' : M} :
                            x = x'f x = f x'
                            theorem LinearMap.congr_fun {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} {f : M →ₛₗ[σ] M₃} {g : M →ₛₗ[σ] M₃} (h : f = g) (x : M) :
                            f x = g x

                            If two linear maps are equal, they are equal at each point.

                            theorem LinearMap.ext_iff {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} {f : M →ₛₗ[σ] M₃} {g : M →ₛₗ[σ] M₃} :
                            f = g ∀ (x : M), f x = g x
                            @[simp]
                            theorem LinearMap.mk_coe {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) (h : ∀ (r : R) (x : M), (f).toFun (r x) = σ r (f).toFun x) :
                            { toAddHom := f, map_smul' := h } = f
                            theorem LinearMap.map_add {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) (x : M) (y : M) :
                            f (x + y) = f x + f y
                            theorem LinearMap.map_zero {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) :
                            f 0 = 0
                            @[simp]
                            theorem LinearMap.map_smulₛₗ {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) (c : R) (x : M) :
                            f (c x) = σ c f x
                            theorem LinearMap.map_smul {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] (fₗ : M →ₗ[R] M₂) (c : R) (x : M) :
                            fₗ (c x) = c fₗ x
                            theorem LinearMap.map_smul_inv {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) {σ' : S →+* R} [RingHomInvPair σ σ'] (c : S) (x : M) :
                            c f x = f (σ' c x)
                            @[simp]
                            theorem LinearMap.map_eq_zero_iff {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) (h : Function.Injective f) {x : M} :
                            f x = 0 x = 0
                            class LinearMap.CompatibleSMul (M : Type u_9) (M₂ : Type u_11) [AddCommMonoid M] [AddCommMonoid M₂] (R : Type u_17) (S : Type u_18) [Semiring S] [SMul R M] [Module S M] [SMul R M₂] [Module S M₂] :

                            A typeclass for SMul structures which can be moved through a LinearMap. This typeclass is generated automatically from an IsScalarTower instance, but exists so that we can also add an instance for AddCommGroup.intModule, allowing z • to be moved even if R does not support negation.

                            • map_smul : ∀ (fₗ : M →ₗ[S] M₂) (c : R) (x : M), fₗ (c x) = c fₗ x

                              Scalar multiplication by R of M can be moved through linear maps.

                            Instances
                              instance LinearMap.IsScalarTower.compatibleSMul {M : Type u_9} {M₂ : Type u_11} [AddCommMonoid M] [AddCommMonoid M₂] {R : Type u_17} {S : Type u_18} [Semiring S] [SMul R M] [Module S M] [SMul R M₂] [Module S M₂] [SMul R S] [IsScalarTower R S M] [IsScalarTower R S M₂] :
                              Equations
                              instance LinearMap.IsScalarTower.compatibleSMul' {M : Type u_9} [AddCommMonoid M] {R : Type u_17} {S : Type u_18} [Semiring S] [SMul R M] [Module S M] [SMul R S] [IsScalarTower R S M] :
                              Equations
                              @[simp]
                              theorem LinearMap.map_smul_of_tower {M : Type u_9} {M₂ : Type u_11} [AddCommMonoid M] [AddCommMonoid M₂] {R : Type u_17} {S : Type u_18} [Semiring S] [SMul R M] [Module S M] [SMul R M₂] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] (fₗ : M →ₗ[S] M₂) (c : R) (x : M) :
                              fₗ (c x) = c fₗ x
                              theorem LinearMap.isScalarTower_of_injective {M : Type u_9} {M₂ : Type u_11} [AddCommMonoid M] [AddCommMonoid M₂] (R : Type u_17) {S : Type u_18} [Semiring S] [SMul R M] [Module S M] [SMul R M₂] [Module S M₂] [SMul R S] [LinearMap.CompatibleSMul M M₂ R S] [IsScalarTower R S M₂] (f : M →ₗ[S] M₂) (hf : Function.Injective f) :
                              theorem LinearMap.isLinearMap_of_compatibleSMul (R : Type u_1) {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] (f : M →ₗ[S] M₂) :
                              def LinearMap.toAddMonoidHom {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) :
                              M →+ M₃

                              convert a linear map to an additive map

                              Equations
                              • LinearMap.toAddMonoidHom f = { toZeroHom := { toFun := f, map_zero' := (_ : f 0 = 0) }, map_add' := (_ : ∀ (x y : M), f (x + y) = f x + f y) }
                              Instances For
                                @[simp]
                                theorem LinearMap.toAddMonoidHom_coe {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} (f : M →ₛₗ[σ] M₃) :
                                def LinearMap.restrictScalars (R : Type u_1) {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] (fₗ : M →ₗ[S] M₂) :
                                M →ₗ[R] M₂

                                If M and M₂ are both R-modules and S-modules and R-module structures are defined by an action of R on S (formally, we have two scalar towers), then any S-linear map from M to M₂ is R-linear.

                                See also LinearMap.map_smul_of_tower.

                                Equations
                                • R fₗ = { toAddHom := { toFun := fₗ, map_add' := (_ : ∀ (x y : M), fₗ (x + y) = fₗ x + fₗ y) }, map_smul' := (_ : ∀ (c : R) (x : M), fₗ (c x) = c fₗ x) }
                                Instances For
                                  instance LinearMap.coeIsScalarTower (R : Type u_1) {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] :
                                  CoeHTCT (M →ₗ[S] M₂) (M →ₗ[R] M₂)
                                  Equations
                                  @[simp]
                                  theorem LinearMap.coe_restrictScalars (R : Type u_1) {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] (f : M →ₗ[S] M₂) :
                                  (R f) = f
                                  theorem LinearMap.restrictScalars_apply (R : Type u_1) {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] (fₗ : M →ₗ[S] M₂) (x : M) :
                                  (R fₗ) x = fₗ x
                                  theorem LinearMap.restrictScalars_injective (R : Type u_1) {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] :
                                  @[simp]
                                  theorem LinearMap.restrictScalars_inj (R : Type u_1) {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] (fₗ : M →ₗ[S] M₂) (gₗ : M →ₗ[S] M₂) :
                                  R fₗ = R gₗ fₗ = gₗ
                                  theorem LinearMap.toAddMonoidHom_injective {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₃] [Module R M] [Module S M₃] {σ : R →+* S} :
                                  Function.Injective LinearMap.toAddMonoidHom
                                  theorem LinearMap.ext_ring {R : Type u_1} {S : Type u_6} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M₃] [Module S M₃] {σ : R →+* S} {f : R →ₛₗ[σ] M₃} {g : R →ₛₗ[σ] M₃} (h : f 1 = g 1) :
                                  f = g

                                  If two σ-linear maps from R are equal on 1, then they are equal.

                                  theorem LinearMap.ext_ring_iff {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommMonoid M] [Module R M] {σ : R →+* R} {f : R →ₛₗ[σ] M} {g : R →ₛₗ[σ] M} :
                                  f = g f 1 = g 1
                                  theorem LinearMap.ext_ring_op {R : Type u_1} {S : Type u_6} {M₃ : Type u_12} [Semiring R] [Semiring S] [AddCommMonoid M₃] [Module S M₃] {σ : Rᵐᵒᵖ →+* S} {f : R →ₛₗ[σ] M₃} {g : R →ₛₗ[σ] M₃} (h : f 1 = g 1) :
                                  f = g
                                  @[simp]
                                  theorem RingHom.toSemilinearMap_apply {R : Type u_1} {S : Type u_6} [Semiring R] [Semiring S] (f : R →+* S) :
                                  ∀ (a : R), (RingHom.toSemilinearMap f) a = (f).toFun a
                                  def RingHom.toSemilinearMap {R : Type u_1} {S : Type u_6} [Semiring R] [Semiring S] (f : R →+* S) :

                                  Interpret a RingHom f as an f-semilinear map.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    def LinearMap.comp {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M₂ →ₛₗ[σ₂₃] M₃) (g : M₁ →ₛₗ[σ₁₂] M₂) :
                                    M₁ →ₛₗ[σ₁₃] M₃

                                    Composition of two linear maps is a linear map

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For

                                      Pretty printer defined by notation3 command.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        ∘ₗ is notation for composition of two linear (not semilinear!) maps into a linear map. This is useful when Lean is struggling to infer the RingHomCompTriple instance.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          theorem LinearMap.comp_apply {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M₂ →ₛₗ[σ₂₃] M₃) (g : M₁ →ₛₗ[σ₁₂] M₂) (x : M₁) :
                                          (LinearMap.comp f g) x = f (g x)
                                          @[simp]
                                          theorem LinearMap.coe_comp {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M₂ →ₛₗ[σ₂₃] M₃) (g : M₁ →ₛₗ[σ₁₂] M₂) :
                                          (LinearMap.comp f g) = f g
                                          @[simp]
                                          theorem LinearMap.comp_id {R₂ : Type u_3} {R₃ : Type u_4} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₂] [Semiring R₃] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₂₃ : R₂ →+* R₃} (f : M₂ →ₛₗ[σ₂₃] M₃) :
                                          LinearMap.comp f LinearMap.id = f
                                          @[simp]
                                          theorem LinearMap.id_comp {R₂ : Type u_3} {R₃ : Type u_4} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₂] [Semiring R₃] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₂₃ : R₂ →+* R₃} (f : M₂ →ₛₗ[σ₂₃] M₃) :
                                          LinearMap.comp LinearMap.id f = f
                                          theorem LinearMap.comp_assoc {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {R₄ : Type u_17} {M₄ : Type u_18} [Semiring R₄] [AddCommMonoid M₄] [Module R₄ M₄] {σ₃₄ : R₃ →+* R₄} {σ₂₄ : R₂ →+* R₄} {σ₁₄ : R₁ →+* R₄} [RingHomCompTriple σ₂₃ σ₃₄ σ₂₄] [RingHomCompTriple σ₁₃ σ₃₄ σ₁₄] [RingHomCompTriple σ₁₂ σ₂₄ σ₁₄] (f : M₁ →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) (h : M₃ →ₛₗ[σ₃₄] M₄) :
                                          theorem Function.Surjective.injective_linearMapComp_right {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {g : M₁ →ₛₗ[σ₁₂] M₂} (hg : Function.Surjective g) :
                                          Function.Injective fun (f : M₂ →ₛₗ[σ₂₃] M₃) => LinearMap.comp f g

                                          The linear map version of Function.Surjective.injective_comp_right

                                          @[simp]
                                          theorem LinearMap.cancel_right {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {f : M₂ →ₛₗ[σ₂₃] M₃} {g : M₁ →ₛₗ[σ₁₂] M₂} {f' : M₂ →ₛₗ[σ₂₃] M₃} (hg : Function.Surjective g) :
                                          theorem Function.Injective.injective_linearMapComp_left {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {f : M₂ →ₛₗ[σ₂₃] M₃} (hf : Function.Injective f) :
                                          Function.Injective fun (g : M₁ →ₛₗ[σ₁₂] M₂) => LinearMap.comp f g

                                          The linear map version of Function.Injective.comp_left

                                          @[simp]
                                          theorem LinearMap.cancel_left {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M₁ : Type u_10} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] {module_M₁ : Module R₁ M₁} {module_M₂ : Module R₂ M₂} {module_M₃ : Module R₃ M₃} {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] {f : M₂ →ₛₗ[σ₂₃] M₃} {g : M₁ →ₛₗ[σ₁₂] M₂} {g' : M₁ →ₛₗ[σ₁₂] M₂} (hf : Function.Injective f) :
                                          def LinearMap.inverse {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module S M₂] {σ : R →+* S} {σ' : S →+* R} [RingHomInvPair σ σ'] (f : M →ₛₗ[σ] M₂) (g : M₂M) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
                                          M₂ →ₛₗ[σ'] M

                                          If a function g is a left and right inverse of a linear map f, then g is linear itself.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            theorem LinearMap.map_neg {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommGroup M] [AddCommGroup M₂] {module_M : Module R M} {module_M₂ : Module S M₂} {σ : R →+* S} (f : M →ₛₗ[σ] M₂) (x : M) :
                                            f (-x) = -f x
                                            theorem LinearMap.map_sub {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring S] [AddCommGroup M] [AddCommGroup M₂] {module_M : Module R M} {module_M₂ : Module S M₂} {σ : R →+* S} (f : M →ₛₗ[σ] M₂) (x : M) (y : M) :
                                            f (x - y) = f x - f y
                                            instance LinearMap.CompatibleSMul.intModule {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [AddCommGroup M₂] {S : Type u_17} [Semiring S] [Module S M] [Module S M₂] :
                                            Equations
                                            instance LinearMap.CompatibleSMul.units {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [AddCommGroup M₂] {R : Type u_17} {S : Type u_18} [Monoid R] [MulAction R M] [MulAction R M₂] [Semiring S] [Module S M] [Module S M₂] [LinearMap.CompatibleSMul M M₂ R S] :
                                            Equations
                                            @[simp]
                                            theorem Module.compHom.toLinearMap_apply {R : Type u_17} {S : Type u_18} [Semiring R] [Semiring S] (g : R →+* S) (a : R) :
                                            def Module.compHom.toLinearMap {R : Type u_17} {S : Type u_18} [Semiring R] [Semiring S] (g : R →+* S) :

                                            g : R →+* S is R-linear when the module structure on S is Module.compHom S g .

                                            Equations
                                            • Module.compHom.toLinearMap g = { toAddHom := { toFun := g, map_add' := (_ : ∀ (a b : R), g (a + b) = g a + g b) }, map_smul' := (_ : ∀ (a b : R), g (a * b) = g a * g b) }
                                            Instances For
                                              def DistribMulActionHom.toLinearMap {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] (fₗ : M →+[R] M₂) :
                                              M →ₗ[R] M₂

                                              A DistribMulActionHom between two modules is a linear map.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                @[simp]
                                                theorem DistribMulActionHom.coe_toLinearMap {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] (f : M →+[R] M₂) :
                                                f = f
                                                theorem DistribMulActionHom.toLinearMap_injective {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] {f : M →+[R] M₂} {g : M →+[R] M₂} (h : f = g) :
                                                f = g
                                                def IsLinearMap.mk' {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] (f : MM₂) (H : IsLinearMap R f) :
                                                M →ₗ[R] M₂

                                                Convert an IsLinearMap predicate to a LinearMap

                                                Equations
                                                • IsLinearMap.mk' f H = { toAddHom := { toFun := f, map_add' := (_ : ∀ (x y : M), f (x + y) = f x + f y) }, map_smul' := (_ : ∀ (c : R) (x : M), f (c x) = c f x) }
                                                Instances For
                                                  @[simp]
                                                  theorem IsLinearMap.mk'_apply {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] {f : MM₂} (H : IsLinearMap R f) (x : M) :
                                                  (IsLinearMap.mk' f H) x = f x
                                                  theorem IsLinearMap.isLinearMap_smul {R : Type u_17} {M : Type u_18} [CommSemiring R] [AddCommMonoid M] [Module R M] (c : R) :
                                                  IsLinearMap R fun (z : M) => c z
                                                  theorem IsLinearMap.isLinearMap_smul' {R : Type u_17} {M : Type u_18} [Semiring R] [AddCommMonoid M] [Module R M] (a : M) :
                                                  IsLinearMap R fun (c : R) => c a
                                                  theorem IsLinearMap.map_zero {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R M₂] {f : MM₂} (lin : IsLinearMap R f) :
                                                  f 0 = 0
                                                  theorem IsLinearMap.isLinearMap_neg {R : Type u_1} {M : Type u_9} [Semiring R] [AddCommGroup M] [Module R M] :
                                                  IsLinearMap R fun (z : M) => -z
                                                  theorem IsLinearMap.map_neg {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R M₂] {f : MM₂} (lin : IsLinearMap R f) (x : M) :
                                                  f (-x) = -f x
                                                  theorem IsLinearMap.map_sub {R : Type u_1} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [AddCommGroup M] [AddCommGroup M₂] [Module R M] [Module R M₂] {f : MM₂} (lin : IsLinearMap R f) (x : M) (y : M) :
                                                  f (x - y) = f x - f y
                                                  def AddMonoidHom.toNatLinearMap {M : Type u_9} {M₂ : Type u_11} [AddCommMonoid M] [AddCommMonoid M₂] (f : M →+ M₂) :

                                                  Reinterpret an additive homomorphism as an -linear map.

                                                  Equations
                                                  Instances For
                                                    theorem AddMonoidHom.toNatLinearMap_injective {M : Type u_9} {M₂ : Type u_11} [AddCommMonoid M] [AddCommMonoid M₂] :
                                                    Function.Injective AddMonoidHom.toNatLinearMap
                                                    def AddMonoidHom.toIntLinearMap {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [AddCommGroup M₂] (f : M →+ M₂) :

                                                    Reinterpret an additive homomorphism as a -linear map.

                                                    Equations
                                                    Instances For
                                                      theorem AddMonoidHom.toIntLinearMap_injective {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [AddCommGroup M₂] :
                                                      Function.Injective AddMonoidHom.toIntLinearMap
                                                      @[simp]
                                                      theorem AddMonoidHom.coe_toIntLinearMap {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [AddCommGroup M₂] (f : M →+ M₂) :
                                                      def AddMonoidHom.toRatLinearMap {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [Module M] [AddCommGroup M₂] [Module M₂] (f : M →+ M₂) :

                                                      Reinterpret an additive homomorphism as a -linear map.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        theorem AddMonoidHom.toRatLinearMap_injective {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [Module M] [AddCommGroup M₂] [Module M₂] :
                                                        Function.Injective AddMonoidHom.toRatLinearMap
                                                        @[simp]
                                                        theorem AddMonoidHom.coe_toRatLinearMap {M : Type u_9} {M₂ : Type u_11} [AddCommGroup M] [Module M] [AddCommGroup M₂] [Module M₂] (f : M →+ M₂) :
                                                        instance LinearMap.instSMulLinearMap {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Monoid S] [DistribMulAction S M₂] [SMulCommClass R₂ S M₂] :
                                                        SMul S (M →ₛₗ[σ₁₂] M₂)
                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        @[simp]
                                                        theorem LinearMap.smul_apply {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Monoid S] [DistribMulAction S M₂] [SMulCommClass R₂ S M₂] (a : S) (f : M →ₛₗ[σ₁₂] M₂) (x : M) :
                                                        (a f) x = a f x
                                                        theorem LinearMap.coe_smul {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Monoid S] [DistribMulAction S M₂] [SMulCommClass R₂ S M₂] (a : S) (f : M →ₛₗ[σ₁₂] M₂) :
                                                        (a f) = a f
                                                        instance LinearMap.instSMulCommClassLinearMapInstSMulLinearMapInstSMulLinearMap {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {T : Type u_8} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Monoid S] [DistribMulAction S M₂] [SMulCommClass R₂ S M₂] [Monoid T] [DistribMulAction T M₂] [SMulCommClass R₂ T M₂] [SMulCommClass S T M₂] :
                                                        SMulCommClass S T (M →ₛₗ[σ₁₂] M₂)
                                                        Equations
                                                        instance LinearMap.instIsScalarTowerLinearMapInstSMulLinearMapInstSMulLinearMap {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {T : Type u_8} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Monoid S] [DistribMulAction S M₂] [SMulCommClass R₂ S M₂] [Monoid T] [DistribMulAction T M₂] [SMulCommClass R₂ T M₂] [SMul S T] [IsScalarTower S T M₂] :
                                                        IsScalarTower S T (M →ₛₗ[σ₁₂] M₂)
                                                        Equations
                                                        instance LinearMap.instIsCentralScalarLinearMapInstSMulLinearMapMulOppositeMonoid {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Monoid S] [DistribMulAction S M₂] [SMulCommClass R₂ S M₂] [DistribMulAction Sᵐᵒᵖ M₂] [SMulCommClass R₂ Sᵐᵒᵖ M₂] [IsCentralScalar S M₂] :
                                                        IsCentralScalar S (M →ₛₗ[σ₁₂] M₂)
                                                        Equations

                                                        Arithmetic on the codomain #

                                                        instance LinearMap.instZeroLinearMap {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {M₂ : Type u_11} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R₁ M] [Module R₂ M₂] {σ₁₂ : R₁ →+* R₂} :
                                                        Zero (M →ₛₗ[σ₁₂] M₂)

                                                        The constant 0 map is linear.

                                                        Equations
                                                        • LinearMap.instZeroLinearMap = { zero := { toAddHom := { toFun := 0, map_add' := (_ : MM0 = 0 + 0) }, map_smul' := (_ : ∀ (a : R₁), M0 = σ₁₂ a 0) } }
                                                        @[simp]
                                                        theorem LinearMap.zero_apply {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {M₂ : Type u_11} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R₁ M] [Module R₂ M₂] {σ₁₂ : R₁ →+* R₂} (x : M) :
                                                        0 x = 0
                                                        @[simp]
                                                        theorem LinearMap.comp_zero {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R₁ M] [Module R₂ M₂] [Module R₃ M₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (g : M₂ →ₛₗ[σ₂₃] M₃) :
                                                        @[simp]
                                                        theorem LinearMap.zero_comp {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R₁ M] [Module R₂ M₂] [Module R₃ M₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M →ₛₗ[σ₁₂] M₂) :
                                                        instance LinearMap.instInhabitedLinearMap {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {M₂ : Type u_11} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R₁ M] [Module R₂ M₂] {σ₁₂ : R₁ →+* R₂} :
                                                        Inhabited (M →ₛₗ[σ₁₂] M₂)
                                                        Equations
                                                        • LinearMap.instInhabitedLinearMap = { default := 0 }
                                                        @[simp]
                                                        theorem LinearMap.default_def {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {M₂ : Type u_11} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R₁ M] [Module R₂ M₂] {σ₁₂ : R₁ →+* R₂} :
                                                        default = 0
                                                        instance LinearMap.instAddLinearMap {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {M₂ : Type u_11} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R₁ M] [Module R₂ M₂] {σ₁₂ : R₁ →+* R₂} :
                                                        Add (M →ₛₗ[σ₁₂] M₂)

                                                        The sum of two linear maps is linear.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        @[simp]
                                                        theorem LinearMap.add_apply {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {M₂ : Type u_11} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R₁ M] [Module R₂ M₂] {σ₁₂ : R₁ →+* R₂} (f : M →ₛₗ[σ₁₂] M₂) (g : M →ₛₗ[σ₁₂] M₂) (x : M) :
                                                        (f + g) x = f x + g x
                                                        theorem LinearMap.add_comp {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R₁ M] [Module R₂ M₂] [Module R₃ M₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) (h : M₂ →ₛₗ[σ₂₃] M₃) :
                                                        theorem LinearMap.comp_add {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R₁ M] [Module R₂ M₂] [Module R₃ M₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M →ₛₗ[σ₁₂] M₂) (g : M →ₛₗ[σ₁₂] M₂) (h : M₂ →ₛₗ[σ₂₃] M₃) :
                                                        instance LinearMap.addCommMonoid {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {M₂ : Type u_11} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R₁ M] [Module R₂ M₂] {σ₁₂ : R₁ →+* R₂} :
                                                        AddCommMonoid (M →ₛₗ[σ₁₂] M₂)

                                                        The type of linear maps is an additive monoid.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        instance LinearMap.instNegLinearMapToAddCommMonoid {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {N₂ : Type u_14} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommGroup N₂] [Module R₁ M] [Module R₂ N₂] {σ₁₂ : R₁ →+* R₂} :
                                                        Neg (M →ₛₗ[σ₁₂] N₂)

                                                        The negation of a linear map is linear.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        @[simp]
                                                        theorem LinearMap.neg_apply {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {N₂ : Type u_14} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommGroup N₂] [Module R₁ M] [Module R₂ N₂] {σ₁₂ : R₁ →+* R₂} (f : M →ₛₗ[σ₁₂] N₂) (x : M) :
                                                        (-f) x = -f x
                                                        @[simp]
                                                        theorem LinearMap.neg_comp {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {M₂ : Type u_11} {N₃ : Type u_15} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommGroup N₃] [Module R₁ M] [Module R₂ M₂] [Module R₃ N₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] N₃) :
                                                        @[simp]
                                                        theorem LinearMap.comp_neg {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {N₂ : Type u_14} {N₃ : Type u_15} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommGroup N₂] [AddCommGroup N₃] [Module R₁ M] [Module R₂ N₂] [Module R₃ N₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M →ₛₗ[σ₁₂] N₂) (g : N₂ →ₛₗ[σ₂₃] N₃) :
                                                        instance LinearMap.instSubLinearMapToAddCommMonoid {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {N₂ : Type u_14} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommGroup N₂] [Module R₁ M] [Module R₂ N₂] {σ₁₂ : R₁ →+* R₂} :
                                                        Sub (M →ₛₗ[σ₁₂] N₂)

                                                        The subtraction of two linear maps is linear.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        @[simp]
                                                        theorem LinearMap.sub_apply {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {N₂ : Type u_14} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommGroup N₂] [Module R₁ M] [Module R₂ N₂] {σ₁₂ : R₁ →+* R₂} (f : M →ₛₗ[σ₁₂] N₂) (g : M →ₛₗ[σ₁₂] N₂) (x : M) :
                                                        (f - g) x = f x - g x
                                                        theorem LinearMap.sub_comp {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {M₂ : Type u_11} {N₃ : Type u_15} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommGroup N₃] [Module R₁ M] [Module R₂ M₂] [Module R₃ N₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] N₃) (h : M₂ →ₛₗ[σ₂₃] N₃) :
                                                        theorem LinearMap.comp_sub {R₁ : Type u_2} {R₂ : Type u_3} {R₃ : Type u_4} {M : Type u_9} {N₂ : Type u_14} {N₃ : Type u_15} [Semiring R₁] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommGroup N₂] [AddCommGroup N₃] [Module R₁ M] [Module R₂ N₂] [Module R₃ N₃] {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] (f : M →ₛₗ[σ₁₂] N₂) (g : M →ₛₗ[σ₁₂] N₂) (h : N₂ →ₛₗ[σ₂₃] N₃) :
                                                        instance LinearMap.addCommGroup {R₁ : Type u_2} {R₂ : Type u_3} {M : Type u_9} {N₂ : Type u_14} [Semiring R₁] [Semiring R₂] [AddCommMonoid M] [AddCommGroup N₂] [Module R₁ M] [Module R₂ N₂] {σ₁₂ : R₁ →+* R₂} :
                                                        AddCommGroup (M →ₛₗ[σ₁₂] N₂)

                                                        The type of linear maps is an additive group.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        instance LinearMap.instDistribMulActionLinearMapToAddMonoidAddCommMonoid {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Monoid S] [DistribMulAction S M₂] [SMulCommClass R₂ S M₂] :
                                                        DistribMulAction S (M →ₛₗ[σ₁₂] M₂)
                                                        Equations
                                                        theorem LinearMap.smul_comp {R : Type u_1} {R₂ : Type u_3} {R₃ : Type u_4} {S₃ : Type u_7} {M : Type u_9} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R] [Semiring R₂] [Semiring R₃] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R M] [Module R₂ M₂] [Module R₃ M₃] {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [Monoid S₃] [DistribMulAction S₃ M₃] [SMulCommClass R₃ S₃ M₃] (a : S₃) (g : M₂ →ₛₗ[σ₂₃] M₃) (f : M →ₛₗ[σ₁₂] M₂) :
                                                        theorem LinearMap.comp_smul {R : Type u_1} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} {M₃ : Type u_12} [Semiring R] [AddCommMonoid M] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R M] [Monoid S] [DistribMulAction S M₂] [Module R M₂] [Module R M₃] [SMulCommClass R S M₂] [DistribMulAction S M₃] [SMulCommClass R S M₃] [LinearMap.CompatibleSMul M₃ M₂ S R] (g : M₃ →ₗ[R] M₂) (a : S) (f : M →ₗ[R] M₃) :
                                                        g ∘ₗ (a f) = a g ∘ₗ f
                                                        instance LinearMap.module {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Semiring S] [Module S M₂] [SMulCommClass R₂ S M₂] :
                                                        Module S (M →ₛₗ[σ₁₂] M₂)
                                                        Equations
                                                        instance LinearMap.instNoZeroSMulDivisorsLinearMapToZeroToMonoidWithZeroInstZeroLinearMapInstSMulLinearMapToMonoidToDistribMulAction {R : Type u_1} {R₂ : Type u_3} {S : Type u_6} {M : Type u_9} {M₂ : Type u_11} [Semiring R] [Semiring R₂] [AddCommMonoid M] [AddCommMonoid M₂] [Module R M] [Module R₂ M₂] {σ₁₂ : R →+* R₂} [Semiring S] [Module S M₂] [SMulCommClass R₂ S M₂] [NoZeroSMulDivisors S M₂] :
                                                        NoZeroSMulDivisors S (M →ₛₗ[σ₁₂] M₂)
                                                        Equations