Pointwise instances on Submodule
s #
This file provides:
and the actions
which matches the action of Set.mulActionSet
.
This file also provides:
Submodule.pointwiseSetSMulSubmodule
: forR
-moduleM
, as : Set R
can act onN : Submodule R M
by definings • N
to be the smallest submodule containing alla • n
wherea ∈ s
andn ∈ N
.
These actions are available in the Pointwise
locale.
Implementation notes #
For an R
-module M
, The action of a subset of R
acting on a submodule of M
introduced in
section set_acting_on_submodules
does not have a counterpart in
Mathlib/GroupTheory/Submonoid/Pointwise.lean
.
Other than section set_acting_on_submodules
, most of the lemmas in this file are direct copies of
lemmas from Mathlib/GroupTheory/Submonoid/Pointwise.lean
.
The submodule with every element negated. Note if R
is a ring and not just a semiring, this
is a no-op, as shown by Submodule.neg_eq_self
.
Recall that When R
is the semiring corresponding to the nonnegative elements of R'
,
Submodule R' M
is the type of cones of M
. This instance reflects such cones about 0
.
This is available as an instance in the Pointwise
locale.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Submodule.pointwiseNeg
is involutive.
This is available as an instance in the Pointwise
locale.
Equations
Instances For
Submodule.pointwiseNeg
as an order isomorphism.
Equations
Instances For
Equations
- One or more equations did not get rendered due to their size.
The action on a submodule corresponding to applying the action to every element.
This is available as an instance in the Pointwise
locale.
Equations
- One or more equations did not get rendered due to their size.
Instances For
See also Submodule.smul_bot
.
See also Submodule.smul_sup
.
Equations
- (_ : IsCentralScalar α (Submodule R M)) = (_ : IsCentralScalar α (Submodule R M))
The action on a submodule corresponding to applying the action to every element.
This is available as an instance in the Pointwise
locale.
This is a stronger version of Submodule.pointwiseDistribMulAction
. Note that add_smul
does
not hold so this cannot be stated as a Module
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Sets acting on Submodules #
Let R
be a (semi)ring and M
an R
-module. Let S
be a monoid which acts on M
distributively,
then subsets of S
can act on submodules of M
.
For subset s ⊆ S
and submodule N ≤ M
, we define s • N
to be the smallest submodule containing
all r • n
where r ∈ s
and n ∈ N
.
Results #
For arbitrary monoids S
acting distributively on M
, there is an induction principle for s • N
:
To prove P
holds for all s • N
, it is enough
to prove:
- for all
r ∈ s
andn ∈ N
,P (r • n)
; - for all
r
andm ∈ s • N
,P (r • n)
; - for all
m₁, m₂
,P m₁
andP m₂
impliesP (m₁ + m₂)
; P 0
.
To invoke this induction principal, use induction x, hx using Submodule.set_smul_inductionOn
where
x : M
and hx : x ∈ s • N
When we consider subset of R
acting on M
Submodule.pointwiseSetDistribMulAction
: the action described above is distributive.Submodule.mem_set_smul
:x ∈ s • N
iffx
can be written asr₀ n₀ + ... + rₖ nₖ
whererᵢ ∈ s
andnᵢ ∈ N
.Submodule.coe_span_smul
:s • N
is the same as⟨s⟩ • N
where⟨s⟩
is the ideal spanned bys
.
Notes #
- If we assume the addition on subsets of
R
is the⊔
and subtraction⊓
i.e. useSetSemiring
, then this action actually gives a module structure on submodules ofM
over subsets ofR
. - If we generalize so that
r • N
makes sense for allr : S
, thenSubmodule.singleton_set_smul
andSubmodule.singleton_set_smul
can be generalized as well.
Let s ⊆ R
be a set and N ≤ M
be a submodule, then s • N
is the smallest submodule containing
all r • n
where r ∈ s
and n ∈ N
.
Equations
Instances For
Induction principal for set acting on submodules. To prove P
holds for all s • N
, it is enough
to prove:
- for all
r ∈ s
andn ∈ N
,P (r • n)
; - for all
r
andm ∈ s • N
,P (r • n)
; - for all
m₁, m₂
,P m₁
andP m₂
impliesP (m₁ + m₂)
; P 0
.
To invoke this induction principal, use induction x, hx using Submodule.set_smul_inductionOn
where
x : M
and hx : x ∈ s • N
A subset of a ring R
has a multiplicative action on submodules of a module over R
.
Equations
Instances For
In a ring, sets acts on submodules.