Absolute values #
This file defines a bundled type of absolute values AbsoluteValue R S.
Main definitions #
AbsoluteValue R Sis the type of absolute values onRmapping toS.AbsoluteValue.absis the "standard" absolute value onS, mapping negativexto-x.AbsoluteValue.toMonoidWithZeroHom: absolute values mapping to a linear ordered field preserve0,*and1IsAbsoluteValue: a type class stating thatf : β → αsatisfies the axioms of an absolute value
AbsoluteValue R S is the type of absolute values on R mapping to S:
the maps that preserve *, are nonnegative, positive definite and satisfy the triangle equality.
- toFun : R → S
- nonneg' : ∀ (x : R), 0 ≤ self.toMulHom.toFun x
The absolute value is nonnegative
The absolute value is positive definitive
The absolute value satisfies the triangle inequality
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : ZeroHomClass (AbsoluteValue R S) R S) = (_ : ZeroHomClass (AbsoluteValue R S) R S)
Equations
- (_ : MulHomClass (AbsoluteValue R S) R S) = (_ : MulHomClass (AbsoluteValue R S) R S)
Equations
- (_ : NonnegHomClass (AbsoluteValue R S) R S) = (_ : NonnegHomClass (AbsoluteValue R S) R S)
Equations
- (_ : SubadditiveHomClass (AbsoluteValue R S) R S) = (_ : SubadditiveHomClass (AbsoluteValue R S) R S)
See Note [custom simps projection].
Equations
Instances For
Helper instance for when there's too many metavariables to apply DFunLike.has_coe_to_fun
directly.
Equations
- AbsoluteValue.instCoeFunAbsoluteValueForAll = DFunLike.hasCoeToFun
Equations
- (_ : MonoidWithZeroHomClass (AbsoluteValue R S) R S) = (_ : MonoidWithZeroHomClass (AbsoluteValue R S) R S)
Absolute values from a nontrivial R to a linear ordered ring preserve *, 0 and 1.
Equations
- AbsoluteValue.toMonoidWithZeroHom abv = ↑abv
Instances For
Absolute values from a nontrivial R to a linear ordered ring preserve * and 1.
Equations
- AbsoluteValue.toMonoidHom abv = ↑abv
Instances For
Equations
- (_ : MulRingNormClass (AbsoluteValue R S) R S) = (_ : MulRingNormClass (AbsoluteValue R S) R S)
AbsoluteValue.abs is abs as a bundled AbsoluteValue.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- AbsoluteValue.instInhabitedAbsoluteValueToSemiringToStrictOrderedSemiringToLinearOrderedSemiringToOrderedSemiring = { default := AbsoluteValue.abs }
A function f is an absolute value if it is nonnegative, zero only at 0, additive, and
multiplicative.
See also the type AbsoluteValue which represents a bundled version of absolute values.
- abv_nonneg' : ∀ (x : R), 0 ≤ f x
The absolute value is nonnegative
The absolute value is positive definitive
The absolute value satisfies the triangle inequality
The absolute value is multiplicative
Instances
The positivity extension which identifies expressions of the form abv a.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A bundled absolute value is an absolute value.
Equations
- (_ : IsAbsoluteValue ⇑abv) = (_ : IsAbsoluteValue ⇑abv)
Convert an unbundled IsAbsoluteValue to a bundled AbsoluteValue.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- (_ : IsAbsoluteValue abs) = (_ : IsAbsoluteValue ⇑AbsoluteValue.abs)
abv as a MonoidWithZeroHom.
Equations
Instances For
An absolute value as a monoid with zero homomorphism, assuming the target is a semifield.