Documentation

Mathlib.Algebra.Order.Group.PosPart

Positive & negative parts #

Mathematical structures possessing an absolute value often also possess a unique decomposition of elements into "positive" and "negative" parts which are in some sense "disjoint" (e.g. the Jordan decomposition of a measure).

This file defines posPart and negPart, the positive and negative parts of an element in a lattice ordered group.

Main statements #

Notations #

References #

Tags #

positive part, negative part

class PosPart (α : Type u_1) :
Type u_1

The positive part of an element admitting a decomposition into positive and negative parts.

  • pos : αα

    The positive part function.

Instances
    class NegPart (α : Type u_1) :
    Type u_1

    The negative part of an element admitting a decomposition into positive and negative parts.

    • neg : αα

      The negative part function.

    Instances

      The positive part function.

      Equations
      Instances For

        The negative part function.

        Equations
        Instances For
          def posPart {α : Type u} [Lattice α] [AddGroup α] (a : α) :
          α

          The positive part of an element a in a lattice ordered group is a ⊔ 0, denoted a⁺.

          Equations
          Instances For
            def oneLePart {α : Type u} [Lattice α] [Group α] (a : α) :
            α

            The positive part of an element a in a lattice ordered group is a ⊔ 1, denoted a⁺ᵐ.

            Equations
            Instances For
              def negPart {α : Type u} [Lattice α] [AddGroup α] (a : α) :
              α

              The negative part of an element a in a lattice ordered group is (-a) ⊔ 0, denoted a⁻.

              Equations
              Instances For
                def leOnePart {α : Type u} [Lattice α] [Group α] (a : α) :
                α

                The negative part of an element a in a lattice ordered group is a⁻¹ ⊔ 1, denoted a⁻ᵐ .

                Equations
                Instances For

                  The positive part of an element a in a lattice ordered group is a ⊔ 1, denoted a⁺ᵐ.

                  Equations
                  Instances For

                    The negative part of an element a in a lattice ordered group is a⁻¹ ⊔ 1, denoted a⁻ᵐ .

                    Equations
                    Instances For

                      The positive part of an element a in a lattice ordered group is a ⊔ 0, denoted a⁺.

                      Equations
                      Instances For

                        The negative part of an element a in a lattice ordered group is (-a) ⊔ 0, denoted a⁻.

                        Equations
                        Instances For
                          theorem posPart_mono {α : Type u} [Lattice α] [AddGroup α] :
                          Monotone posPart
                          theorem oneLePart_mono {α : Type u} [Lattice α] [Group α] :
                          Monotone oneLePart
                          theorem negPart_anti {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] :
                          Antitone negPart
                          theorem leOnePart_anti {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] :
                          Antitone leOnePart
                          @[simp]
                          theorem posPart_zero {α : Type u} [Lattice α] [AddGroup α] :
                          0 = 0
                          @[simp]
                          theorem oneLePart_one {α : Type u} [Lattice α] [Group α] :
                          @[simp]
                          theorem negPart_zero {α : Type u} [Lattice α] [AddGroup α] :
                          0 = 0
                          @[simp]
                          theorem leOnePart_one {α : Type u} [Lattice α] [Group α] :
                          theorem posPart_nonneg {α : Type u} [Lattice α] [AddGroup α] (a : α) :
                          0 a
                          theorem one_le_oneLePart {α : Type u} [Lattice α] [Group α] (a : α) :
                          theorem negPart_nonneg {α : Type u} [Lattice α] [AddGroup α] (a : α) :
                          0 a
                          theorem one_le_leOnePart {α : Type u} [Lattice α] [Group α] (a : α) :
                          theorem le_posPart {α : Type u} [Lattice α] [AddGroup α] (a : α) :
                          a a
                          theorem le_oneLePart {α : Type u} [Lattice α] [Group α] (a : α) :
                          theorem neg_le_negPart {α : Type u} [Lattice α] [AddGroup α] (a : α) :
                          theorem inv_le_leOnePart {α : Type u} [Lattice α] [Group α] (a : α) :
                          theorem posPart_eq_self {α : Type u} [Lattice α] [AddGroup α] {a : α} :
                          a = a 0 a
                          theorem oneLePart_eq_self {α : Type u} [Lattice α] [Group α] {a : α} :
                          a⁺ᵐ = a 1 a
                          theorem posPart_eq_zero {α : Type u} [Lattice α] [AddGroup α] {a : α} :
                          a = 0 a 0
                          theorem oneLePart_eq_one {α : Type u} [Lattice α] [Group α] {a : α} :
                          a⁺ᵐ = 1 a 1
                          theorem negPart_eq_neg' {α : Type u} [Lattice α] [AddGroup α] {a : α} :
                          a = -a 0 -a
                          theorem leOnePart_eq_inv' {α : Type u} [Lattice α] [Group α] {a : α} :
                          theorem negPart_eq_neg {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          a = -a a 0
                          theorem leOnePart_eq_inv {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          theorem negPart_eq_zero' {α : Type u} [Lattice α] [AddGroup α] {a : α} :
                          a = 0 -a 0
                          theorem leOnePart_eq_one' {α : Type u} [Lattice α] [Group α] {a : α} :
                          theorem negPart_eq_zero {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          a = 0 0 a
                          theorem leOnePart_eq_one {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          a⁻ᵐ = 1 1 a
                          theorem posPart_nonpos {α : Type u} [Lattice α] [AddGroup α] {a : α} :
                          a 0 a 0
                          theorem oneLePart_le_one {α : Type u} [Lattice α] [Group α] {a : α} :
                          a⁺ᵐ 1 a 1
                          theorem negPart_nonpos' {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          a 0 -a 0
                          theorem leOnePart_le_one' {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          @[simp]
                          theorem posPart_neg {α : Type u} [Lattice α] [AddGroup α] (a : α) :
                          (-a) = a
                          @[simp]
                          theorem oneLePart_inv {α : Type u} [Lattice α] [Group α] (a : α) :
                          @[simp]
                          theorem negPart_neg {α : Type u} [Lattice α] [AddGroup α] (a : α) :
                          (-a) = a
                          @[simp]
                          theorem leOnePart_inv {α : Type u} [Lattice α] [Group α] (a : α) :
                          theorem negPart_nonpos {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          a 0 -a 0
                          theorem leOnePart_le_one {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] {a : α} :
                          theorem negPart_eq_neg_inf_zero {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          a = -(a 0)
                          theorem leOnePart_eq_inv_inf_one {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          @[simp]
                          theorem posPart_sub_negPart {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          a - a = a
                          @[simp]
                          theorem oneLePart_div_leOnePart {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          theorem posPart_add_negPart {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          a + a = |a|
                          theorem oneLePart_mul_leOnePart {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          theorem posPart_inf_negPart_eq_zero {α : Type u} [Lattice α] [AddGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          a a = 0
                          theorem oneLePart_inf_leOnePart_eq_one {α : Type u} [Lattice α] [Group α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) :
                          theorem sup_eq_add_posPart_sub {α : Type u} [Lattice α] [AddCommGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
                          a b = b + (a - b)
                          theorem sup_eq_mul_oneLePart_div {α : Type u} [Lattice α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
                          a b = b * (a / b)⁺ᵐ
                          theorem inf_eq_sub_posPart_sub {α : Type u} [Lattice α] [AddCommGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
                          a b = a - (a - b)
                          theorem inf_eq_div_oneLePart_div {α : Type u} [Lattice α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
                          a b = a / (a / b)⁺ᵐ
                          theorem le_iff_posPart_negPart {α : Type u} [Lattice α] [AddCommGroup α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
                          theorem le_iff_oneLePart_leOnePart {α : Type u} [Lattice α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
                          theorem posPart_eq_of_posPart_pos {α : Type u} [LinearOrder α] [AddCommGroup α] {a : α} (ha : 0 < a) :
                          a = a
                          theorem oneLePart_of_one_lt_oneLePart {α : Type u} [LinearOrder α] [CommGroup α] {a : α} (ha : 1 < a⁺ᵐ) :