Documentation

Mathlib.Algebra.Order.Interval

Interval arithmetic #

This file defines arithmetic operations on intervals and prove their correctness. Note that this is full precision operations. The essentials of float operations can be found in Data.FP.Basic. We have not yet integrated these with the rest of the library.

One/zero #

Equations
instance instOneNonemptyIntervalToLE {α : Type u_2} [Preorder α] [One α] :
Equations
@[simp]
theorem NonemptyInterval.toProd_zero {α : Type u_2} [Preorder α] [Zero α] :
0.toProd = 0
@[simp]
theorem NonemptyInterval.toProd_one {α : Type u_2} [Preorder α] [One α] :
1.toProd = 1
theorem NonemptyInterval.fst_zero {α : Type u_2} [Preorder α] [Zero α] :
0.toProd.1 = 0
theorem NonemptyInterval.fst_one {α : Type u_2} [Preorder α] [One α] :
1.toProd.1 = 1
theorem NonemptyInterval.snd_zero {α : Type u_2} [Preorder α] [Zero α] :
0.toProd.2 = 0
theorem NonemptyInterval.snd_one {α : Type u_2} [Preorder α] [One α] :
1.toProd.2 = 1
@[simp]
theorem NonemptyInterval.coe_zero_interval {α : Type u_2} [Preorder α] [Zero α] :
0 = 0
@[simp]
theorem NonemptyInterval.coe_one_interval {α : Type u_2} [Preorder α] [One α] :
1 = 1
@[simp]
@[simp]
@[simp]
theorem Interval.pure_zero {α : Type u_2} [Preorder α] [Zero α] :
@[simp]
theorem Interval.pure_one {α : Type u_2} [Preorder α] [One α] :
theorem Interval.zero_ne_bot {α : Type u_2} [Preorder α] [Zero α] :
theorem Interval.one_ne_bot {α : Type u_2} [Preorder α] [One α] :
theorem Interval.bot_ne_zero {α : Type u_2} [Preorder α] [Zero α] :
theorem Interval.bot_ne_one {α : Type u_2} [Preorder α] [One α] :
@[simp]
theorem NonemptyInterval.coe_zero {α : Type u_2} [PartialOrder α] [Zero α] :
0 = 0
@[simp]
theorem NonemptyInterval.coe_one {α : Type u_2} [PartialOrder α] [One α] :
1 = 1
theorem NonemptyInterval.one_mem_one {α : Type u_2} [PartialOrder α] [One α] :
1 1
@[simp]
theorem Interval.coe_zero {α : Type u_2} [PartialOrder α] [Zero α] :
0 = 0
@[simp]
theorem Interval.coe_one {α : Type u_2} [PartialOrder α] [One α] :
1 = 1
theorem Interval.zero_mem_zero {α : Type u_2} [PartialOrder α] [Zero α] :
0 0
theorem Interval.one_mem_one {α : Type u_2} [PartialOrder α] [One α] :
1 1

Addition/multiplication #

Note that this multiplication does not apply to or .

instance instAddNonemptyIntervalToLE {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] :
Equations
  • instAddNonemptyIntervalToLE = { add := fun (s t : NonemptyInterval α) => { toProd := s.toProd + t.toProd, fst_le_snd := (_ : s.toProd.1 + t.toProd.1 s.toProd.2 + t.toProd.2) } }
theorem instAddNonemptyIntervalToLE.proof_1 {α : Type u_1} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
s.toProd.1 + t.toProd.1 s.toProd.2 + t.toProd.2
instance instMulNonemptyIntervalToLE {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] :
Equations
  • instMulNonemptyIntervalToLE = { mul := fun (s t : NonemptyInterval α) => { toProd := s.toProd * t.toProd, fst_le_snd := (_ : s.toProd.1 * t.toProd.1 s.toProd.2 * t.toProd.2) } }
instance instAddIntervalToLE {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] :
Equations
instance instMulIntervalToLE {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] :
Equations
@[simp]
theorem NonemptyInterval.toProd_add {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s + t).toProd = s.toProd + t.toProd
@[simp]
theorem NonemptyInterval.toProd_mul {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s * t).toProd = s.toProd * t.toProd
theorem NonemptyInterval.fst_add {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s + t).toProd.1 = s.toProd.1 + t.toProd.1
theorem NonemptyInterval.fst_mul {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s * t).toProd.1 = s.toProd.1 * t.toProd.1
theorem NonemptyInterval.snd_add {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s + t).toProd.2 = s.toProd.2 + t.toProd.2
theorem NonemptyInterval.snd_mul {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s * t).toProd.2 = s.toProd.2 * t.toProd.2
@[simp]
theorem NonemptyInterval.coe_add_interval {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s + t) = s + t
@[simp]
theorem NonemptyInterval.coe_mul_interval {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s * t) = s * t
@[simp]
theorem NonemptyInterval.pure_add_pure {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
@[simp]
theorem NonemptyInterval.pure_mul_pure {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
@[simp]
theorem Interval.bot_add {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (t : Interval α) :
@[simp]
theorem Interval.bot_mul {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (t : Interval α) :
theorem Interval.add_bot {α : Type u_2} [Preorder α] [Add α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : Interval α) :
@[simp]
theorem Interval.mul_bot {α : Type u_2} [Preorder α] [Mul α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : Interval α) :

Powers #

instance NonemptyInterval.hasNSMul {α : Type u_2} [AddMonoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] :
Equations
  • NonemptyInterval.hasNSMul = { smul := fun (n : ) (s : NonemptyInterval α) => { toProd := (n s.toProd.1, n s.toProd.2), fst_le_snd := (_ : n s.toProd.1 n s.toProd.2) } }
instance NonemptyInterval.hasPow {α : Type u_2} [Monoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] :
Equations
  • NonemptyInterval.hasPow = { pow := fun (s : NonemptyInterval α) (n : ) => { toProd := s.toProd ^ n, fst_le_snd := (_ : s.toProd.1 ^ n s.toProd.2 ^ n) } }
@[simp]
theorem NonemptyInterval.toProd_nsmul {α : Type u_2} [AddMonoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (n : ) :
(n s).toProd = n s.toProd
@[simp]
theorem NonemptyInterval.toProd_pow {α : Type u_2} [Monoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (n : ) :
(s ^ n).toProd = s.toProd ^ n
theorem NonemptyInterval.fst_nsmul {α : Type u_2} [AddMonoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (n : ) :
(n s).toProd.1 = n s.toProd.1
theorem NonemptyInterval.fst_pow {α : Type u_2} [Monoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (n : ) :
(s ^ n).toProd.1 = s.toProd.1 ^ n
theorem NonemptyInterval.snd_nsmul {α : Type u_2} [AddMonoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (n : ) :
(n s).toProd.2 = n s.toProd.2
theorem NonemptyInterval.snd_pow {α : Type u_2} [Monoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (n : ) :
(s ^ n).toProd.2 = s.toProd.2 ^ n
@[simp]
theorem NonemptyInterval.pure_nsmul {α : Type u_2} [AddMonoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) (n : ) :
@[simp]
theorem NonemptyInterval.pure_pow {α : Type u_2} [Monoid α] [Preorder α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] [CovariantClass α α (Function.swap fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) (n : ) :
theorem NonemptyInterval.addCommMonoid.proof_4 {α : Type u_1} [OrderedAddCommMonoid α] (s : NonemptyInterval α) (n : ) :
(n s).toProd = n s.toProd
theorem NonemptyInterval.addCommMonoid.proof_3 {α : Type u_1} [OrderedAddCommMonoid α] (s : NonemptyInterval α) (t : NonemptyInterval α) :
(s + t).toProd = s.toProd + t.toProd
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
theorem Interval.addZeroClass.proof_2 {α : Type u_1} [OrderedAddCommMonoid α] (s : Interval α) :
Option.map₂ (fun (x x_1 : NonemptyInterval α) => x + x_1) s (some 0) = s
theorem Interval.addZeroClass.proof_1 {α : Type u_1} [OrderedAddCommMonoid α] (s : Interval α) :
Option.map₂ (fun (x x_1 : NonemptyInterval α) => x + x_1) (some 0) s = s
Equations
  • One or more equations did not get rendered due to their size.
theorem Interval.addCommMonoid.proof_4 {α : Type u_1} [OrderedAddCommMonoid α] :
∀ (x : Interval α), nsmulRec 0 x = nsmulRec 0 x
theorem Interval.addCommMonoid.proof_1 {α : Type u_1} [OrderedAddCommMonoid α] :
∀ (x x_1 x_2 : Interval α), Option.map₂ (fun (x x_3 : NonemptyInterval α) => x + x_3) (Option.map₂ (fun (x x_3 : NonemptyInterval α) => x + x_3) x x_1) x_2 = Option.map₂ (fun (x x_3 : NonemptyInterval α) => x + x_3) x (Option.map₂ (fun (x x_3 : NonemptyInterval α) => x + x_3) x_1 x_2)
theorem Interval.addCommMonoid.proof_6 {α : Type u_1} [OrderedAddCommMonoid α] :
∀ (x x_1 : Interval α), Option.map₂ (fun (x x_2 : NonemptyInterval α) => x + x_2) x x_1 = Option.map₂ (fun (x x_2 : NonemptyInterval α) => x + x_2) x_1 x
theorem Interval.addCommMonoid.proof_5 {α : Type u_1} [OrderedAddCommMonoid α] :
∀ (n : ) (x : Interval α), nsmulRec (n + 1) x = nsmulRec (n + 1) x
Equations
  • One or more equations did not get rendered due to their size.
Equations
  • One or more equations did not get rendered due to their size.
theorem NonemptyInterval.coe_nsmul_interval {α : Type u_2} [OrderedAddCommMonoid α] (s : NonemptyInterval α) (n : ) :
(n s) = n s
@[simp]
theorem NonemptyInterval.coe_pow_interval {α : Type u_2} [OrderedCommMonoid α] (s : NonemptyInterval α) (n : ) :
(s ^ n) = s ^ n
theorem Interval.bot_nsmul {α : Type u_2} [OrderedAddCommMonoid α] {n : } :
n 0n =
abbrev Interval.bot_nsmul.match_1 (motive : (x : ) → x 0Prop) :
∀ (x : ) (x_1 : x 0), (∀ (h : 0 0), motive 0 h)(∀ (n : ) (x : Nat.succ n 0), motive (Nat.succ n) x)motive x x_1
Equations
  • (_ : motive x✝ x) = (_ : motive x✝ x)
Instances For
    theorem Interval.bot_pow {α : Type u_2} [OrderedCommMonoid α] {n : } :
    n 0 ^ n =

    Subtraction #

    Subtraction is defined more generally than division so that it applies to (and OrderedDiv is not a thing and probably should not become one).

    instance instSubNonemptyIntervalToLE {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] :
    Equations
    • One or more equations did not get rendered due to their size.
    instance instSubIntervalToLE {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] :
    Equations
    @[simp]
    theorem NonemptyInterval.fst_sub {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
    (s - t).toProd.1 = s.toProd.1 - t.toProd.2
    @[simp]
    theorem NonemptyInterval.snd_sub {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
    (s - t).toProd.2 = s.toProd.2 - t.toProd.1
    @[simp]
    theorem NonemptyInterval.coe_sub_interval {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
    (s - t) = s - t
    theorem NonemptyInterval.sub_mem_sub {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) {a : α} {b : α} (ha : a s) (hb : b t) :
    a - b s - t
    @[simp]
    theorem NonemptyInterval.pure_sub_pure {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
    @[simp]
    theorem Interval.bot_sub {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (t : Interval α) :
    @[simp]
    theorem Interval.sub_bot {α : Type u_2} [Preorder α] [AddCommSemigroup α] [Sub α] [OrderedSub α] [CovariantClass α α (fun (x x_1 : α) => x + x_1) fun (x x_1 : α) => x x_1] (s : Interval α) :

    Division in ordered groups #

    Note that this division does not apply to or .

    instance instDivNonemptyIntervalToLE {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] :
    Equations
    • One or more equations did not get rendered due to their size.
    instance instDivIntervalToLE {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] :
    Equations
    @[simp]
    theorem NonemptyInterval.fst_div {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
    (s / t).toProd.1 = s.toProd.1 / t.toProd.2
    @[simp]
    theorem NonemptyInterval.snd_div {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
    (s / t).toProd.2 = s.toProd.2 / t.toProd.1
    @[simp]
    theorem NonemptyInterval.coe_div_interval {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) :
    (s / t) = s / t
    theorem NonemptyInterval.div_mem_div {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : NonemptyInterval α) (t : NonemptyInterval α) (a : α) (b : α) (ha : a s) (hb : b t) :
    a / b s / t
    @[simp]
    theorem NonemptyInterval.pure_div_pure {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (a : α) (b : α) :
    @[simp]
    theorem Interval.bot_div {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (t : Interval α) :
    @[simp]
    theorem Interval.div_bot {α : Type u_2} [Preorder α] [CommGroup α] [CovariantClass α α (fun (x x_1 : α) => x * x_1) fun (x x_1 : α) => x x_1] (s : Interval α) :

    Negation/inversion #

    Equations
    • instNegNonemptyIntervalToLEToPreorderToPartialOrder = { neg := fun (s : NonemptyInterval α) => { toProd := (-s.toProd.2, -s.toProd.1), fst_le_snd := (_ : -s.toProd.2 -s.toProd.1) } }
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    • instNegIntervalToLEToPreorderToPartialOrder = { neg := Option.map Neg.neg }
    Equations
    • instInvIntervalToLEToPreorderToPartialOrder = { inv := Option.map Inv.inv }
    @[simp]
    theorem NonemptyInterval.fst_neg {α : Type u_2} [OrderedAddCommGroup α] (s : NonemptyInterval α) :
    (-s).toProd.1 = -s.toProd.2
    @[simp]
    theorem NonemptyInterval.fst_inv {α : Type u_2} [OrderedCommGroup α] (s : NonemptyInterval α) :
    s⁻¹.toProd.1 = s.toProd.2⁻¹
    @[simp]
    theorem NonemptyInterval.snd_neg {α : Type u_2} [OrderedAddCommGroup α] (s : NonemptyInterval α) :
    (-s).toProd.2 = -s.toProd.1
    @[simp]
    theorem NonemptyInterval.snd_inv {α : Type u_2} [OrderedCommGroup α] (s : NonemptyInterval α) :
    s⁻¹.toProd.2 = s.toProd.1⁻¹
    @[simp]
    theorem NonemptyInterval.coe_neg_interval {α : Type u_2} [OrderedAddCommGroup α] (s : NonemptyInterval α) :
    (-s) = -s
    @[simp]
    theorem NonemptyInterval.neg_mem_neg {α : Type u_2} [OrderedAddCommGroup α] (s : NonemptyInterval α) (a : α) (ha : a s) :
    -a -s
    theorem NonemptyInterval.inv_mem_inv {α : Type u_2} [OrderedCommGroup α] (s : NonemptyInterval α) (a : α) (ha : a s) :
    @[simp]
    @[simp]
    theorem NonemptyInterval.add_eq_zero_iff {α : Type u_2} [OrderedAddCommGroup α] {s : NonemptyInterval α} {t : NonemptyInterval α} :
    s + t = 0 ∃ (a : α) (b : α), s = NonemptyInterval.pure a t = NonemptyInterval.pure b a + b = 0
    theorem NonemptyInterval.mul_eq_one_iff {α : Type u_2} [OrderedCommGroup α] {s : NonemptyInterval α} {t : NonemptyInterval α} :
    s * t = 1 ∃ (a : α) (b : α), s = NonemptyInterval.pure a t = NonemptyInterval.pure b a * b = 1
    Equations
    Equations
    theorem Interval.add_eq_zero_iff {α : Type u_2} [OrderedAddCommGroup α] {s : Interval α} {t : Interval α} :
    s + t = 0 ∃ (a : α) (b : α), s = Interval.pure a t = Interval.pure b a + b = 0
    theorem Interval.mul_eq_one_iff {α : Type u_2} [OrderedCommGroup α] {s : Interval α} {t : Interval α} :
    s * t = 1 ∃ (a : α) (b : α), s = Interval.pure a t = Interval.pure b a * b = 1
    Equations
    Equations

    The length of an interval is its first component minus its second component. This measures the accuracy of the approximation by an interval.

    Equations
    Instances For
      @[simp]
      theorem NonemptyInterval.length_sum {ι : Type u_1} {α : Type u_2} [OrderedAddCommGroup α] (f : ιNonemptyInterval α) (s : Finset ι) :
      NonemptyInterval.length (Finset.sum s fun (i : ι) => f i) = Finset.sum s fun (i : ι) => NonemptyInterval.length (f i)
      def Interval.length {α : Type u_2} [OrderedAddCommGroup α] :
      Interval αα

      The length of an interval is its first component minus its second component. This measures the accuracy of the approximation by an interval.

      Equations
      Instances For
        @[simp]
        theorem Interval.length_sum_le {ι : Type u_1} {α : Type u_2} [OrderedAddCommGroup α] (f : ιInterval α) (s : Finset ι) :
        Interval.length (Finset.sum s fun (i : ι) => f i) Finset.sum s fun (i : ι) => Interval.length (f i)

        Extension for the positivity tactic: The length of an interval is always nonnegative.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Extension for the positivity tactic: The length of an interval is always nonnegative.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For