Units in ordered monoids #
Equations
- AddUnits.instPreorderAddUnits = Preorder.lift AddUnits.val
Equations
- Units.instPreorderUnits = Preorder.lift Units.val
instance
AddUnits.instPartialOrderAddUnits
{α : Type u_1}
[AddMonoid α]
[PartialOrder α]
:
PartialOrder (AddUnits α)
Equations
- AddUnits.instPartialOrderAddUnits = PartialOrder.lift AddUnits.val (_ : Function.Injective AddUnits.val)
Equations
- Units.instPartialOrderUnits = PartialOrder.lift Units.val (_ : Function.Injective Units.val)
instance
AddUnits.instLinearOrderAddUnits
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
:
LinearOrder (AddUnits α)
Equations
- AddUnits.instLinearOrderAddUnits = LinearOrder.lift' AddUnits.val (_ : Function.Injective AddUnits.val)
Equations
- Units.instLinearOrderUnits = LinearOrder.lift' Units.val (_ : Function.Injective Units.val)
theorem
AddUnits.orderEmbeddingVal.proof_1
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
:
∀ {a b : AddUnits α},
{ toFun := AddUnits.val, inj' := (_ : Function.Injective AddUnits.val) } a ≤ { toFun := AddUnits.val, inj' := (_ : Function.Injective AddUnits.val) } b ↔ { toFun := AddUnits.val, inj' := (_ : Function.Injective AddUnits.val) } a ≤ { toFun := AddUnits.val, inj' := (_ : Function.Injective AddUnits.val) } b
val : add_units α → α
as an order embedding.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddUnits.orderEmbeddingVal_apply
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
:
⇑AddUnits.orderEmbeddingVal = AddUnits.val
@[simp]
theorem
Units.orderEmbeddingVal_apply
{α : Type u_1}
[Monoid α]
[LinearOrder α]
:
⇑Units.orderEmbeddingVal = Units.val
val : αˣ → α
as an order embedding.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddUnits.max_val
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
{a : AddUnits α}
{b : AddUnits α}
:
@[simp]
@[simp]
theorem
AddUnits.min_val
{α : Type u_1}
[AddMonoid α]
[LinearOrder α]
{a : AddUnits α}
{b : AddUnits α}
:
@[simp]