Lemma about subtraction in ordered monoids with a top element adjoined. #
theorem
WithTop.map_sub
{α : Type u_1}
{β : Type u_2}
[Sub α]
[Zero α]
[Sub β]
[Zero β]
{f : α → β}
(h : ∀ (x y : α), f (x - y) = f x - f y)
(h₀ : f 0 = 0)
(x : WithTop α)
(y : WithTop α)
:
WithTop.map f (x - y) = WithTop.map f x - WithTop.map f y
instance
WithTop.instOrderedSubWithTopToLEPreorderToPreorderToPartialOrderToOrderedAddCommMonoidAddToAddToAddCommMagmaToAddCommSemigroupToAddCommMonoidInstSubWithTopToZeroToAddMonoid
{α : Type u_1}
[CanonicallyOrderedAddCommMonoid α]
[Sub α]
[OrderedSub α]
:
OrderedSub (WithTop α)
Equations
- (_ : OrderedSub (WithTop α)) = (_ : OrderedSub (WithTop α))