Documentation

Mathlib.Algebra.Pointwise.Stabilizer

Stabilizer of a set under a pointwise action #

This file characterises the stabilizer of a set/finset under the pointwise action of a group.

Stabilizer of a set #

@[simp]
@[simp]
theorem MulAction.stabilizer_empty {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] :
@[simp]
theorem AddAction.stabilizer_singleton {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] (b : α) :
@[simp]
theorem MulAction.stabilizer_singleton {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] (b : α) :
theorem AddAction.mem_stabilizer_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} :
a AddAction.stabilizer G s ∀ (b : α), a +ᵥ b s b s
theorem MulAction.mem_stabilizer_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} :
a MulAction.stabilizer G s ∀ (b : α), a b s b s
theorem AddAction.map_stabilizer_le {G : Type u_1} {H : Type u_2} [AddGroup G] [AddGroup H] (f : G →+ H) (s : Set G) :
theorem MulAction.map_stabilizer_le {G : Type u_1} {H : Type u_2} [Group G] [Group H] (f : G →* H) (s : Set G) :
@[simp]
theorem AddAction.stabilizer_add_self {G : Type u_1} [AddGroup G] (s : Set G) :
(AddAction.stabilizer G s) + s = s
@[simp]
theorem MulAction.stabilizer_mul_self {G : Type u_1} [Group G] (s : Set G) :
(MulAction.stabilizer G s) * s = s

Stabilizer of a subgroup #

@[simp]
theorem MulAction.stabilizer_subgroup {G : Type u_1} [Group G] (s : Subgroup G) :

Stabilizer of a finset #

@[simp]
@[simp]
theorem MulAction.stabilizer_coe_finset {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] [DecidableEq α] (s : Finset α) :
@[simp]
@[simp]
theorem AddAction.mem_stabilizer_finset {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a AddAction.stabilizer G s ∀ (b : α), a +ᵥ b s b s
theorem MulAction.mem_stabilizer_finset {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a MulAction.stabilizer G s ∀ (b : α), a b s b s
theorem AddAction.mem_stabilizer_finset' {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a AddAction.stabilizer G s ∀ ⦃b : α⦄, b sa +ᵥ b s
theorem MulAction.mem_stabilizer_finset' {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} [DecidableEq α] {s : Finset α} :
a MulAction.stabilizer G s ∀ ⦃b : α⦄, b sa b s

Stabilizer of a finite set #

theorem AddAction.mem_stabilizer_set_iff_subset_vadd_set {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} (hs : Set.Finite s) :
theorem MulAction.mem_stabilizer_set_iff_subset_smul_set {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : Set.Finite s) :
theorem AddAction.mem_stabilizer_set_iff_vadd_set_subset {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} (hs : Set.Finite s) :
theorem MulAction.mem_stabilizer_set_iff_smul_set_subset {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : Set.Finite s) :
theorem AddAction.mem_stabilizer_set' {G : Type u_1} {α : Type u_3} [AddGroup G] [AddAction G α] {a : G} {s : Set α} (hs : Set.Finite s) :
a AddAction.stabilizer G s ∀ ⦃b : α⦄, b sa +ᵥ b s
theorem MulAction.mem_stabilizer_set' {G : Type u_1} {α : Type u_3} [Group G] [MulAction G α] {a : G} {s : Set α} (hs : Set.Finite s) :
a MulAction.stabilizer G s ∀ ⦃b : α⦄, b sa b s

Stabilizer in a commutative group #

@[simp]
theorem AddAction.add_stabilizer_self {G : Type u_1} [AddCommGroup G] (s : Set G) :
s + (AddAction.stabilizer G s) = s
@[simp]
theorem MulAction.mul_stabilizer_self {G : Type u_1} [CommGroup G] (s : Set G) :
s * (MulAction.stabilizer G s) = s