Square-free elements of unique factorization monoids #
Main results: #
squarefree_mul_iff
:x * y
is square-free iffx
andy
have no common factors and are themselves square-free.
theorem
squarefree_iff
{R : Type u_1}
[CancelCommMonoidWithZero R]
[UniqueFactorizationMonoid R]
{x : R}
(hx₀ : x ≠ 0)
(hxu : ¬IsUnit x)
:
theorem
Squarefree.pow_dvd_of_squarefree_of_pow_succ_dvd_mul_right
{R : Type u_1}
[CancelCommMonoidWithZero R]
{x : R}
{y : R}
{p : R}
{k : ℕ}
(hx : Squarefree x)
(hp : Prime p)
(h : p ^ (k + 1) ∣ x * y)
:
theorem
Squarefree.pow_dvd_of_squarefree_of_pow_succ_dvd_mul_left
{R : Type u_1}
[CancelCommMonoidWithZero R]
{x : R}
{y : R}
{p : R}
{k : ℕ}
(hy : Squarefree y)
(hp : Prime p)
(h : p ^ (k + 1) ∣ x * y)
:
theorem
Squarefree.dvd_of_squarefree_of_mul_dvd_mul_right
{R : Type u_1}
[CancelCommMonoidWithZero R]
[UniqueFactorizationMonoid R]
{x : R}
{y : R}
{d : R}
(hx : Squarefree x)
(h : d * d ∣ x * y)
:
d ∣ y
theorem
Squarefree.dvd_of_squarefree_of_mul_dvd_mul_left
{R : Type u_1}
[CancelCommMonoidWithZero R]
[UniqueFactorizationMonoid R]
{x : R}
{y : R}
{d : R}
(hy : Squarefree y)
(h : d * d ∣ x * y)
:
d ∣ x
theorem
squarefree_mul_iff
{R : Type u_1}
[CancelCommMonoidWithZero R]
[UniqueFactorizationMonoid R]
{x : R}
{y : R}
:
Squarefree (x * y) ↔ (∀ (d : R), d ∣ x → d ∣ y → IsUnit d) ∧ Squarefree x ∧ Squarefree y
theorem
exists_squarefree_dvd_pow_of_ne_zero
{R : Type u_1}
[CancelCommMonoidWithZero R]
[UniqueFactorizationMonoid R]
{x : R}
(hx : x ≠ 0)
: