Documentation

Mathlib.Algebra.Squarefree.UniqueFactorizationDomain

Square-free elements of unique factorization monoids #

Main results: #

theorem squarefree_iff {R : Type u_1} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R] {x : R} (hx₀ : x 0) (hxu : ¬IsUnit x) :
Squarefree x ∀ (p : R), Prime p¬p * p x
theorem Squarefree.pow_dvd_of_squarefree_of_pow_succ_dvd_mul_right {R : Type u_1} [CancelCommMonoidWithZero R] {x : R} {y : R} {p : R} {k : } (hx : Squarefree x) (hp : Prime p) (h : p ^ (k + 1) x * y) :
p ^ k y
theorem Squarefree.pow_dvd_of_squarefree_of_pow_succ_dvd_mul_left {R : Type u_1} [CancelCommMonoidWithZero R] {x : R} {y : R} {p : R} {k : } (hy : Squarefree y) (hp : Prime p) (h : p ^ (k + 1) x * y) :
p ^ k x
theorem Squarefree.dvd_of_squarefree_of_mul_dvd_mul_right {R : Type u_1} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R] {x : R} {y : R} {d : R} (hx : Squarefree x) (h : d * d x * y) :
d y
theorem Squarefree.dvd_of_squarefree_of_mul_dvd_mul_left {R : Type u_1} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R] {x : R} {y : R} {d : R} (hy : Squarefree y) (h : d * d x * y) :
d x
theorem squarefree_mul_iff {R : Type u_1} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R] {x : R} {y : R} :
Squarefree (x * y) (∀ (d : R), d xd yIsUnit d) Squarefree x Squarefree y
theorem exists_squarefree_dvd_pow_of_ne_zero {R : Type u_1} [CancelCommMonoidWithZero R] [UniqueFactorizationMonoid R] {x : R} (hx : x 0) :
∃ (y : R) (n : ), Squarefree y y x x y ^ n