Symmetrized algebra #
A commutative multiplication on a real or complex space can be constructed from any multiplication by "symmetrization" i.e $$ a \circ b = \frac{1}{2}(ab + ba) $$
We provide the symmetrized version of a type α
as SymAlg α
, with notation αˢʸᵐ
.
Implementation notes #
The approach taken here is inspired by Mathlib/Algebra/Opposites.lean
. We use Oxford Spellings
(IETF en-GB-oxendict).
References #
- [Hanche-Olsen and Størmer, Jordan Operator Algebras][hancheolsenstormer1984]
Equations
- «term_ˢʸᵐ» = Lean.ParserDescr.trailingNode `term_ˢʸᵐ 1024 1024 (Lean.ParserDescr.symbol "ˢʸᵐ")
Instances For
@[match_pattern]
The element of SymAlg α
that represents a : α
.
Equations
- SymAlg.sym = Equiv.refl α
Instances For
Equations
- (_ : Nontrivial αˢʸᵐ) = (_ : Nontrivial αˢʸᵐ)
Equations
- (_ : Subsingleton αˢʸᵐ) = (_ : Subsingleton αˢʸᵐ)
Equations
- SymAlg.instUniqueSymAlg = Unique.mk' αˢʸᵐ
Equations
- SymAlg.addCommSemigroup = Function.Injective.addCommSemigroup ⇑SymAlg.unsym (_ : Function.Injective ⇑SymAlg.unsym) (_ : ∀ (a b : αˢʸᵐ), SymAlg.unsym (a + b) = SymAlg.unsym a + SymAlg.unsym b)
instance
SymAlg.instModuleSymAlgAddCommMonoid
{α : Type u_1}
{R : Type u_2}
[Semiring R]
[AddCommMonoid α]
[Module R α]
:
Equations
- One or more equations did not get rendered due to their size.
instance
SymAlg.instInvertibleSymAlgInstMulSymAlgToAddToAddSemigroupToAddMonoidToOneInstOfNatAtLeastTwoOfNatNatInstOfNatNatToNatCastInstNatAtLeastTwoInstOneSymAlgCoeEquivInstFunLikeEquivSym
{α : Type u_1}
[Mul α]
[AddMonoidWithOne α]
[Invertible 2]
(a : α)
[Invertible a]
:
Invertible (SymAlg.sym a)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
SymAlg.invOf_sym
{α : Type u_1}
[Mul α]
[AddMonoidWithOne α]
[Invertible 2]
(a : α)
[Invertible a]
:
The symmetrization of a real (unital, associative) algebra is a non-associative ring.
The squaring operation coincides for both multiplications
theorem
SymAlg.mul_comm
{α : Type u_1}
[Mul α]
[AddCommSemigroup α]
[One α]
[OfNat α 2]
[Invertible 2]
(a : αˢʸᵐ)
(b : αˢʸᵐ)
:
Equations
- (_ : IsCommJordan αˢʸᵐ) = (_ : IsCommJordan αˢʸᵐ)