Morphisms of finite type #
A morphism of schemes f : X ⟶ Y
is locally of finite type if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, The induced map Γ(Y, U) ⟶ Γ(X, V)
is of finite type.
A morphism of schemes is of finite type if it is both locally of finite type and quasi-compact.
We show that these properties are local, and are stable under compositions.
theorem
AlgebraicGeometry.locallyOfFiniteType_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
AlgebraicGeometry.LocallyOfFiniteType f ↔ ∀ (U : ↑(AlgebraicGeometry.Scheme.affineOpens Y)) (V : ↑(AlgebraicGeometry.Scheme.affineOpens X)) (e : ↑V ≤ f⁻¹ᵁ ↑U),
RingHom.FiniteType (AlgebraicGeometry.Scheme.Hom.appLe f e)
class
AlgebraicGeometry.LocallyOfFiniteType
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
A morphism of schemes f : X ⟶ Y
is locally of finite type if for each affine U ⊆ Y
and
V ⊆ f ⁻¹' U
, The induced map Γ(Y, U) ⟶ Γ(X, V)
is of finite type.
- finiteType_of_affine_subset : ∀ (U : ↑(AlgebraicGeometry.Scheme.affineOpens Y)) (V : ↑(AlgebraicGeometry.Scheme.affineOpens X)) (e : ↑V ≤ f⁻¹ᵁ ↑U), RingHom.FiniteType (AlgebraicGeometry.Scheme.Hom.appLe f e)
Instances
instance
AlgebraicGeometry.locallyOfFiniteTypeOfIsOpenImmersion
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
[AlgebraicGeometry.IsOpenImmersion f]
:
Equations
instance
AlgebraicGeometry.locallyOfFiniteTypeComp
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : AlgebraicGeometry.LocallyOfFiniteType f]
[hg : AlgebraicGeometry.LocallyOfFiniteType g]
:
Equations
theorem
AlgebraicGeometry.locallyOfFiniteTypeOfComp
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[hf : AlgebraicGeometry.LocallyOfFiniteType (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.LocallyOfFiniteType.affine_openCover_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(𝒰 : AlgebraicGeometry.Scheme.OpenCover Y)
[∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)]
(𝒰' : (i : (AlgebraicGeometry.Scheme.OpenCover.pullbackCover 𝒰 f).J) →
AlgebraicGeometry.Scheme.OpenCover ((AlgebraicGeometry.Scheme.OpenCover.pullbackCover 𝒰 f).obj i))
[∀ (i : (AlgebraicGeometry.Scheme.OpenCover.pullbackCover 𝒰 f).J) (j : (𝒰' i).J),
AlgebraicGeometry.IsAffine ((𝒰' i).obj j)]
:
AlgebraicGeometry.LocallyOfFiniteType f ↔ ∀ (i : (AlgebraicGeometry.Scheme.OpenCover.pullbackCover 𝒰 f).J) (j : (𝒰' i).J),
RingHom.FiniteType
(AlgebraicGeometry.Scheme.Γ.toPrefunctor.map
(CategoryTheory.CategoryStruct.comp ((𝒰' i).map j) CategoryTheory.Limits.pullback.snd).op)
theorem
AlgebraicGeometry.LocallyOfFiniteType.source_openCover_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(𝒰 : AlgebraicGeometry.Scheme.OpenCover X)
:
AlgebraicGeometry.LocallyOfFiniteType f ↔ ∀ (i : 𝒰.J), AlgebraicGeometry.LocallyOfFiniteType (CategoryTheory.CategoryStruct.comp (𝒰.map i) f)
theorem
AlgebraicGeometry.LocallyOfFiniteType.openCover_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(𝒰 : AlgebraicGeometry.Scheme.OpenCover Y)
:
AlgebraicGeometry.LocallyOfFiniteType f ↔ ∀ (i : 𝒰.J), AlgebraicGeometry.LocallyOfFiniteType CategoryTheory.Limits.pullback.snd