This file proves additional properties of the prime spectrum a ring is Noetherian.
theorem
PrimeSpectrum.exists_primeSpectrum_prod_le
(R : Type u)
[CommRing R]
[IsNoetherianRing R]
(I : Ideal R)
:
∃ (Z : Multiset (PrimeSpectrum R)), Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I
In a noetherian ring, every ideal contains a product of prime ideals ([samuel, § 3.3, Lemma 3])
theorem
PrimeSpectrum.exists_primeSpectrum_prod_le_and_ne_bot_of_domain
{A : Type u}
[CommRing A]
[IsDomain A]
[IsNoetherianRing A]
(h_fA : ¬IsField A)
{I : Ideal A}
(h_nzI : I ≠ ⊥)
:
∃ (Z : Multiset (PrimeSpectrum A)),
Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≤ I ∧ Multiset.prod (Multiset.map PrimeSpectrum.asIdeal Z) ≠ ⊥
In a noetherian integral domain which is not a field, every non-zero ideal contains a non-zero product of prime ideals; in a field, the whole ring is a non-zero ideal containing only 0 as product or prime ideals ([samuel, § 3.3, Lemma 3])
instance
PrimeSpectrum.instNoetherianSpacePrimeSpectrumToCommSemiringZariskiTopology
(R : Type u)
[CommRing R]
[IsNoetherianRing R]
:
Equations
- (_ : TopologicalSpace.NoetherianSpace (PrimeSpectrum R)) = (_ : TopologicalSpace.NoetherianSpace (PrimeSpectrum R))