Linear functions are analytic #
In this file we prove that a ContinuousLinearMap
defines an analytic function with
the formal power series f x = f a + f (x - a)
. We also prove similar results for multilinear maps.
@[simp]
theorem
ContinuousLinearMap.fpowerSeries_radius
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
theorem
ContinuousLinearMap.hasFPowerSeriesOnBall
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
HasFPowerSeriesOnBall (βf) (ContinuousLinearMap.fpowerSeries f x) x β€
theorem
ContinuousLinearMap.hasFPowerSeriesAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
HasFPowerSeriesAt (βf) (ContinuousLinearMap.fpowerSeries f x) x
theorem
ContinuousLinearMap.analyticAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E βL[π] F)
(x : E)
:
AnalyticAt π (βf) x
def
ContinuousLinearMap.uncurryBilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
:
ContinuousMultilinearMap π (fun (i : Fin 2) => E Γ F) G
Reinterpret a bilinear map f : E βL[π] F βL[π] G
as a multilinear map
(E Γ F) [Γ2]βL[π] G
. This multilinear map is the second term in the formal
multilinear series expansion of uncurry f
. It is given by
f.uncurryBilinear ![(x, y), (x', y')] = f x y'
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ContinuousLinearMap.uncurryBilinear_apply
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(m : Fin 2 β E Γ F)
:
(ContinuousLinearMap.uncurryBilinear f) m = (f (m 0).1) (m 1).2
def
ContinuousLinearMap.fpowerSeriesBilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
FormalMultilinearSeries π (E Γ F) G
Formal multilinear series expansion of a bilinear function f : E βL[π] F βL[π] G
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
ContinuousLinearMap.fpowerSeriesBilinear f x 0 = ContinuousMultilinearMap.curry0 π (E Γ F) ((f x.1) x.2)
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
ContinuousLinearMap.fpowerSeriesBilinear f x 1 = (LinearIsometryEquiv.symm (continuousMultilinearCurryFin1 π (E Γ F) G)) ((ContinuousLinearMap.derivβ f) x)
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_two
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_apply_add_three
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
(n : β)
:
ContinuousLinearMap.fpowerSeriesBilinear f x (n + 3) = 0
@[simp]
theorem
ContinuousLinearMap.fpowerSeriesBilinear_radius
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
theorem
ContinuousLinearMap.hasFPowerSeriesOnBall_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
HasFPowerSeriesOnBall (fun (x : E Γ F) => (f x.1) x.2) (ContinuousLinearMap.fpowerSeriesBilinear f x) x β€
theorem
ContinuousLinearMap.hasFPowerSeriesAt_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
HasFPowerSeriesAt (fun (x : E Γ F) => (f x.1) x.2) (ContinuousLinearMap.fpowerSeriesBilinear f x) x
theorem
ContinuousLinearMap.analyticAt_bilinear
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
(f : E βL[π] F βL[π] G)
(x : E Γ F)
:
AnalyticAt π (fun (x : E Γ F) => (f x.1) x.2) x
theorem
analyticAt_id
(π : Type u_1)
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
(z : E)
:
AnalyticAt π id z
theorem
analyticOn_id
(π : Type u_1)
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{s : Set E}
:
AnalyticOn π (fun (x : E) => x) s
id
is entire
theorem
analyticAt_fst
(π : Type u_1)
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
AnalyticAt π (fun (p : E Γ F) => p.1) p
fst
is analytic
theorem
analyticAt_snd
(π : Type u_1)
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
AnalyticAt π (fun (p : E Γ F) => p.2) p
snd
is analytic
theorem
analyticOn_fst
(π : Type u_1)
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set (E Γ F)}
:
AnalyticOn π (fun (p : E Γ F) => p.1) s
fst
is entire
theorem
analyticOn_snd
(π : Type u_1)
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set (E Γ F)}
:
AnalyticOn π (fun (p : E Γ F) => p.2) s
snd
is entire