Representation of FormalMultilinearSeries.radius
as a liminf
#
In this file we prove that the radius of convergence of a FormalMultilinearSeries
is equal to
$\liminf_{n\to\infty} \frac{1}{\sqrt[n]{āp nā}}$. This lemma can't go to Analysis.Analytic.Basic
because this would create a circular dependency once we redefine exp
using
FormalMultilinearSeries
.
theorem
FormalMultilinearSeries.radius_eq_liminf
{š : Type u_1}
[NontriviallyNormedField š]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace š E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace š F]
(p : FormalMultilinearSeries š E F)
:
FormalMultilinearSeries.radius p = Filter.liminf (fun (n : ā) => 1 / ā(āp nāā ^ (1 / ān))) Filter.atTop
The radius of a formal multilinear series is equal to
$\liminf_{n\to\infty} \frac{1}{\sqrt[n]{āp nā}}$. The actual statement uses āā„0
and some
coercions.