Documentation

Mathlib.Analysis.BoxIntegral.Partition.Tagged

Tagged partitions #

A tagged (pre)partition is a (pre)partition π enriched with a tagged point for each box of π. For simplicity we require that the function BoxIntegral.TaggedPrepartition.tag is defined on all boxes J : Box ι but use its values only on boxes of the partition. Given π : BoxIntegral.TaggedPrepartition I, we require that each BoxIntegral.TaggedPrepartition π J belongs to BoxIntegral.Box.Icc I. If for every J ∈ π, π.tag J belongs to J.Icc, then π is called a Henstock partition. We do not include this assumption into the definition of a tagged (pre)partition because McShane integral is defined as a limit along tagged partitions without this requirement.

Tags #

rectangular box, box partition

A tagged prepartition is a prepartition enriched with a tagged point for each box of the prepartition. For simplicity we require that tag is defined for all boxes in ι → ℝ but we will use only the values of tag on the boxes of the partition.

Instances For
    Equations
    @[simp]
    @[simp]
    theorem BoxIntegral.TaggedPrepartition.mem_mk {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} (π : BoxIntegral.Prepartition I) (f : BoxIntegral.Box ιι) (h : ∀ (J : BoxIntegral.Box ι), f J BoxIntegral.Box.Icc I) :
    J { toPrepartition := π, tag := f, tag_mem_Icc := h } J π

    Union of all boxes of a tagged prepartition.

    Equations
    Instances For
      @[simp]
      theorem BoxIntegral.TaggedPrepartition.iUnion_mk {ι : Type u_1} {I : BoxIntegral.Box ι} (π : BoxIntegral.Prepartition I) (f : BoxIntegral.Box ιι) (h : ∀ (J : BoxIntegral.Box ι), f J BoxIntegral.Box.Icc I) :
      BoxIntegral.TaggedPrepartition.iUnion { toPrepartition := π, tag := f, tag_mem_Icc := h } = BoxIntegral.Prepartition.iUnion π

      A tagged prepartition is a partition if it covers the whole box.

      Equations
      Instances For

        The tagged partition made of boxes of π that satisfy predicate p.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Given a partition π of I : BoxIntegral.Box ι and a collection of tagged partitions πi J of all boxes J ∈ π, returns the tagged partition of I into all the boxes of πi J with tags coming from (πi J).tag.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem BoxIntegral.Prepartition.tag_biUnionTagged {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} (π : BoxIntegral.Prepartition I) {πi : (J : BoxIntegral.Box ι) → BoxIntegral.TaggedPrepartition J} (hJ : J π) {J' : BoxIntegral.Box ι} (hJ' : J' πi J) :
            (BoxIntegral.Prepartition.biUnionTagged π πi).tag J' = (πi J).tag J'
            theorem BoxIntegral.Prepartition.forall_biUnionTagged {ι : Type u_1} {I : BoxIntegral.Box ι} (p : (ι)BoxIntegral.Box ιProp) (π : BoxIntegral.Prepartition I) (πi : (J : BoxIntegral.Box ι) → BoxIntegral.TaggedPrepartition J) :
            (JBoxIntegral.Prepartition.biUnionTagged π πi, p ((BoxIntegral.Prepartition.biUnionTagged π πi).tag J) J) Jπ, J'πi J, p ((πi J).tag J') J'

            Given a tagged partition π of I and a (not tagged) partition πi J hJ of each J ∈ π, returns the tagged partition of I into all the boxes of all πi J hJ. The tag of a box J is defined to be the π.tag of the box of the partition π that includes J.

            Note that usually the result is not a Henstock partition.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              Given two partitions π₁ and π₁, one of them tagged and the other is not, returns the tagged partition with toPrepartition = π₁.toPrepartition ⊓ π₂ and tags coming from π₁.

              Note that usually the result is not a Henstock partition.

              Equations
              Instances For

                A tagged partition is said to be a Henstock partition if for each J ∈ π, the tag of J belongs to J.Icc.

                Equations
                Instances For

                  In a Henstock prepartition, there are at most 2 ^ Fintype.card ι boxes with a given tag.

                  A tagged partition π is subordinate to r : (ι → ℝ) → ℝ if each box J ∈ π is included in the closed ball with center π.tag J and radius r (π.tag J).

                  Equations
                  Instances For
                    theorem BoxIntegral.TaggedPrepartition.IsSubordinate.mono' {ι : Type u_1} {I : BoxIntegral.Box ι} {r₁ : (ι)(Set.Ioi 0)} {r₂ : (ι)(Set.Ioi 0)} [Fintype ι] {π : BoxIntegral.TaggedPrepartition I} (hr₁ : BoxIntegral.TaggedPrepartition.IsSubordinate π r₁) (h : Jπ, r₁ (π.tag J) r₂ (π.tag J)) :
                    theorem BoxIntegral.TaggedPrepartition.IsSubordinate.mono {ι : Type u_1} {I : BoxIntegral.Box ι} {r₁ : (ι)(Set.Ioi 0)} {r₂ : (ι)(Set.Ioi 0)} [Fintype ι] {π : BoxIntegral.TaggedPrepartition I} (hr₁ : BoxIntegral.TaggedPrepartition.IsSubordinate π r₁) (h : xBoxIntegral.Box.Icc I, r₁ x r₂ x) :
                    theorem BoxIntegral.TaggedPrepartition.IsSubordinate.diam_le {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} {r : (ι)(Set.Ioi 0)} [Fintype ι] {π : BoxIntegral.TaggedPrepartition I} (h : BoxIntegral.TaggedPrepartition.IsSubordinate π r) (hJ : J π.boxes) :
                    Metric.diam (BoxIntegral.Box.Icc J) 2 * (r (π.tag J))
                    @[simp]
                    theorem BoxIntegral.TaggedPrepartition.single_tag {ι : Type u_1} (I : BoxIntegral.Box ι) (J : BoxIntegral.Box ι) (hJ : J I) (x : ι) (h : x BoxIntegral.Box.Icc I) :
                    (BoxIntegral.TaggedPrepartition.single I J hJ x h).tag = fun (x_1 : BoxIntegral.Box ι) => x
                    @[simp]
                    theorem BoxIntegral.TaggedPrepartition.single_boxes_val {ι : Type u_1} (I : BoxIntegral.Box ι) (J : BoxIntegral.Box ι) (hJ : J I) (x : ι) (h : x BoxIntegral.Box.Icc I) :
                    (BoxIntegral.TaggedPrepartition.single I J hJ x h).toPrepartition.boxes.val = {J}
                    def BoxIntegral.TaggedPrepartition.single {ι : Type u_1} (I : BoxIntegral.Box ι) (J : BoxIntegral.Box ι) (hJ : J I) (x : ι) (h : x BoxIntegral.Box.Icc I) :

                    Tagged prepartition with single box and prescribed tag.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem BoxIntegral.TaggedPrepartition.mem_single {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} {x : ι} {J' : BoxIntegral.Box ι} (hJ : J I) (h : x BoxIntegral.Box.Icc I) :
                      theorem BoxIntegral.TaggedPrepartition.forall_mem_single {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} {x : ι} (p : (ι)BoxIntegral.Box ιProp) (hJ : J I) (h : x BoxIntegral.Box.Icc I) :
                      (J'BoxIntegral.TaggedPrepartition.single I J hJ x h, p ((BoxIntegral.TaggedPrepartition.single I J hJ x h).tag J') J') p x J
                      @[simp]
                      theorem BoxIntegral.TaggedPrepartition.isHenstock_single_iff {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} {x : ι} (hJ : J I) (h : x BoxIntegral.Box.Icc I) :
                      @[simp]
                      theorem BoxIntegral.TaggedPrepartition.isSubordinate_single {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} {x : ι} {r : (ι)(Set.Ioi 0)} [Fintype ι] (hJ : J I) (h : x BoxIntegral.Box.Icc I) :
                      @[simp]
                      theorem BoxIntegral.TaggedPrepartition.iUnion_single {ι : Type u_1} {I : BoxIntegral.Box ι} {J : BoxIntegral.Box ι} {x : ι} (hJ : J I) (h : x BoxIntegral.Box.Icc I) :

                      Union of two tagged prepartitions with disjoint unions of boxes.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        If I ≤ J, then every tagged prepartition of I is a tagged prepartition of J.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          The distortion of a tagged prepartition is the maximum of distortions of its boxes.

                          Equations
                          Instances For