Normed bump function #
In this file we define ContDiffBump.normed f μ
to be the bump function f
normalized so that
∫ x, f.normed μ x ∂μ = 1
and prove some properties of this function.
def
ContDiffBump.normed
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
(μ : MeasureTheory.Measure E)
:
E → ℝ
A bump function normed so that ∫ x, f.normed μ x ∂μ = 1
.
Equations
- ContDiffBump.normed f μ x = ↑f x / ∫ (x : E), ↑f x ∂μ
Instances For
theorem
ContDiffBump.normed_def
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
(x : E)
:
ContDiffBump.normed f μ x = ↑f x / ∫ (x : E), ↑f x ∂μ
theorem
ContDiffBump.nonneg_normed
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
(x : E)
:
0 ≤ ContDiffBump.normed f μ x
theorem
ContDiffBump.contDiff_normed
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
{n : ℕ∞}
:
ContDiff ℝ n (ContDiffBump.normed f μ)
theorem
ContDiffBump.continuous_normed
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
:
theorem
ContDiffBump.normed_sub
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
(x : E)
:
ContDiffBump.normed f μ (c - x) = ContDiffBump.normed f μ (c + x)
theorem
ContDiffBump.normed_neg
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{μ : MeasureTheory.Measure E}
(f : ContDiffBump 0)
(x : E)
:
ContDiffBump.normed f μ (-x) = ContDiffBump.normed f μ x
theorem
ContDiffBump.integrable
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
theorem
ContDiffBump.integrable_normed
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
theorem
ContDiffBump.integral_pos
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
:
0 < ∫ (x : E), ↑f x ∂μ
theorem
ContDiffBump.integral_normed
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
:
∫ (x : E), ContDiffBump.normed f μ x ∂μ = 1
theorem
ContDiffBump.support_normed_eq
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
:
Function.support (ContDiffBump.normed f μ) = Metric.ball c f.rOut
theorem
ContDiffBump.tsupport_normed_eq
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
:
tsupport (ContDiffBump.normed f μ) = Metric.closedBall c f.rOut
theorem
ContDiffBump.hasCompactSupport_normed
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
:
theorem
ContDiffBump.tendsto_support_normed_smallSets
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
{μ : MeasureTheory.Measure E}
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{ι : Type u_2}
{φ : ι → ContDiffBump c}
{l : Filter ι}
(hφ : Filter.Tendsto (fun (i : ι) => (φ i).rOut) l (nhds 0))
:
Filter.Tendsto (fun (i : ι) => Function.support fun (x : E) => ContDiffBump.normed (φ i) μ x) l
(Filter.smallSets (nhds c))
theorem
ContDiffBump.integral_normed_smul
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
(μ : MeasureTheory.Measure E)
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
{X : Type u_2}
[NormedAddCommGroup X]
[NormedSpace ℝ X]
[CompleteSpace X]
(z : X)
:
∫ (x : E), ContDiffBump.normed f μ x • z ∂μ = z
theorem
ContDiffBump.measure_closedBall_le_integral
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
(μ : MeasureTheory.Measure E)
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
ENNReal.toReal (↑↑μ (Metric.closedBall c f.rIn)) ≤ ∫ (x : E), ↑f x ∂μ
theorem
ContDiffBump.normed_le_div_measure_closedBall_rIn
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
(μ : MeasureTheory.Measure E)
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
(x : E)
:
ContDiffBump.normed f μ x ≤ 1 / ENNReal.toReal (↑↑μ (Metric.closedBall c f.rIn))
theorem
ContDiffBump.integral_le_measure_closedBall
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
(μ : MeasureTheory.Measure E)
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
:
∫ (x : E), ↑f x ∂μ ≤ ENNReal.toReal (↑↑μ (Metric.closedBall c f.rOut))
theorem
ContDiffBump.measure_closedBall_div_le_integral
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
(μ : MeasureTheory.Measure E)
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsAddHaarMeasure μ]
(K : ℝ)
(h : f.rOut ≤ K * f.rIn)
:
ENNReal.toReal (↑↑μ (Metric.closedBall c f.rOut)) / K ^ FiniteDimensional.finrank ℝ E ≤ ∫ (x : E), ↑f x ∂μ
theorem
ContDiffBump.normed_le_div_measure_closedBall_rOut
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[HasContDiffBump E]
[MeasurableSpace E]
{c : E}
(f : ContDiffBump c)
(μ : MeasureTheory.Measure E)
[BorelSpace E]
[FiniteDimensional ℝ E]
[MeasureTheory.IsLocallyFiniteMeasure μ]
[MeasureTheory.Measure.IsOpenPosMeasure μ]
[MeasureTheory.Measure.IsAddHaarMeasure μ]
(K : ℝ)
(h : f.rOut ≤ K * f.rIn)
(x : E)
:
ContDiffBump.normed f μ x ≤ K ^ FiniteDimensional.finrank ℝ E / ENNReal.toReal (↑↑μ (Metric.closedBall c f.rOut))