Conformal maps between inner product spaces #
A function between inner product spaces which has a derivative at x
is conformal at x
iff the derivative preserves inner products up to a scalar multiple.
theorem
conformalAt_iff'
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f : E → F}
{x : E}
:
A real differentiable map f
is conformal at point x
if and only if its
differential fderiv ℝ f x
at that point scales every inner product by a positive scalar.
theorem
conformalAt_iff
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f : E → F}
{x : E}
{f' : E →L[ℝ] F}
(h : HasFDerivAt f f' x)
:
A real differentiable map f
is conformal at point x
if and only if its
differential f'
at that point scales every inner product by a positive scalar.
def
conformalFactorAt
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f : E → F}
{x : E}
(h : ConformalAt f x)
:
The conformal factor of a conformal map at some point x
. Some authors refer to this function
as the characteristic function of the conformal map.
Equations
Instances For
theorem
conformalFactorAt_pos
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f : E → F}
{x : E}
(h : ConformalAt f x)
:
0 < conformalFactorAt h
theorem
conformalFactorAt_inner_eq_mul_inner'
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f : E → F}
{x : E}
(h : ConformalAt f x)
(u : E)
(v : E)
:
theorem
conformalFactorAt_inner_eq_mul_inner
{E : Type u_1}
{F : Type u_2}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[InnerProductSpace ℝ E]
[InnerProductSpace ℝ F]
{f : E → F}
{x : E}
{f' : E →L[ℝ] F}
(h : HasFDerivAt f f' x)
(H : ConformalAt f x)
(u : E)
(v : E)
:
⟪f' u, f' v⟫_ℝ = conformalFactorAt H * ⟪u, v⟫_ℝ