Higher differentiability in finite dimensions. #
Finite dimensional results #
theorem
contDiffOn_clm_apply
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type uE}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{F : Type uF}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{G : Type uG}
[NormedAddCommGroup G]
[NormedSpace 𝕜 G]
[CompleteSpace 𝕜]
{n : ℕ∞}
{f : E → F →L[𝕜] G}
{s : Set E}
[FiniteDimensional 𝕜 F]
:
ContDiffOn 𝕜 n f s ↔ ∀ (y : F), ContDiffOn 𝕜 n (fun (x : E) => (f x) y) s
A family of continuous linear maps is C^n
on s
if all its applications are.
theorem
contDiff_clm_apply_iff
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type uE}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{F : Type uF}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
{G : Type uG}
[NormedAddCommGroup G]
[NormedSpace 𝕜 G]
[CompleteSpace 𝕜]
{n : ℕ∞}
{f : E → F →L[𝕜] G}
[FiniteDimensional 𝕜 F]
:
theorem
contDiff_succ_iff_fderiv_apply
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type uE}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{F : Type uF}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[CompleteSpace 𝕜]
[FiniteDimensional 𝕜 E]
{n : ℕ}
{f : E → F}
:
This is a useful lemma to prove that a certain operation preserves functions being C^n
.
When you do induction on n
, this gives a useful characterization of a function being C^(n+1)
,
assuming you have already computed the derivative. The advantage of this version over
contDiff_succ_iff_fderiv
is that both occurrences of ContDiff
are for functions with the same
domain and codomain (E
and F
). This is not the case for contDiff_succ_iff_fderiv
, which
often requires an inconvenient need to generalize F
, which results in universe issues
(see the discussion in the section of ContDiff.comp
).
This lemma avoids these universe issues, but only applies for finite dimensional E
.
theorem
contDiffOn_succ_of_fderiv_apply
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type uE}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{F : Type uF}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[CompleteSpace 𝕜]
[FiniteDimensional 𝕜 E]
{n : ℕ}
{f : E → F}
{s : Set E}
(hf : DifferentiableOn 𝕜 f s)
(h : ∀ (y : E), ContDiffOn 𝕜 (↑n) (fun (x : E) => (fderivWithin 𝕜 f s x) y) s)
:
ContDiffOn 𝕜 (↑(n + 1)) f s
theorem
contDiffOn_succ_iff_fderiv_apply
{𝕜 : Type u_1}
[NontriviallyNormedField 𝕜]
{E : Type uE}
[NormedAddCommGroup E]
[NormedSpace 𝕜 E]
{F : Type uF}
[NormedAddCommGroup F]
[NormedSpace 𝕜 F]
[CompleteSpace 𝕜]
[FiniteDimensional 𝕜 E]
{n : ℕ}
{f : E → F}
{s : Set E}
(hs : UniqueDiffOn 𝕜 s)
:
ContDiffOn 𝕜 (↑(n + 1)) f s ↔ DifferentiableOn 𝕜 f s ∧ ∀ (y : E), ContDiffOn 𝕜 (↑n) (fun (x : E) => (fderivWithin 𝕜 f s x) y) s