Derivative of the cartesian product of functions #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Analysis/Calculus/FDeriv/Basic.lean
.
This file contains the usual formulas (and existence assertions) for the derivative of cartesian products of functions, and functions into Pi-types.
Derivative of the cartesian product of two functions #
theorem
HasStrictFDerivAt.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{fβ' : E βL[π] F}
{x : E}
{fβ : E β G}
{fβ' : E βL[π] G}
(hfβ : HasStrictFDerivAt fβ fβ' x)
(hfβ : HasStrictFDerivAt fβ fβ' x)
:
HasStrictFDerivAt (fun (x : E) => (fβ x, fβ x)) (ContinuousLinearMap.prod fβ' fβ') x
theorem
HasFDerivAtFilter.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{fβ' : E βL[π] F}
{x : E}
{L : Filter E}
{fβ : E β G}
{fβ' : E βL[π] G}
(hfβ : HasFDerivAtFilter fβ fβ' x L)
(hfβ : HasFDerivAtFilter fβ fβ' x L)
:
HasFDerivAtFilter (fun (x : E) => (fβ x, fβ x)) (ContinuousLinearMap.prod fβ' fβ') x L
theorem
HasFDerivWithinAt.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{fβ' : E βL[π] F}
{x : E}
{s : Set E}
{fβ : E β G}
{fβ' : E βL[π] G}
(hfβ : HasFDerivWithinAt fβ fβ' s x)
(hfβ : HasFDerivWithinAt fβ fβ' s x)
:
HasFDerivWithinAt (fun (x : E) => (fβ x, fβ x)) (ContinuousLinearMap.prod fβ' fβ') s x
theorem
HasFDerivAt.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{fβ' : E βL[π] F}
{x : E}
{fβ : E β G}
{fβ' : E βL[π] G}
(hfβ : HasFDerivAt fβ fβ' x)
(hfβ : HasFDerivAt fβ fβ' x)
:
HasFDerivAt (fun (x : E) => (fβ x, fβ x)) (ContinuousLinearMap.prod fβ' fβ') x
theorem
hasFDerivAt_prod_mk_left
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(eβ : E)
(fβ : F)
:
HasFDerivAt (fun (e : E) => (e, fβ)) (ContinuousLinearMap.inl π E F) eβ
theorem
hasFDerivAt_prod_mk_right
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(eβ : E)
(fβ : F)
:
HasFDerivAt (fun (f : F) => (eβ, f)) (ContinuousLinearMap.inr π E F) fβ
theorem
DifferentiableWithinAt.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{x : E}
{s : Set E}
{fβ : E β G}
(hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x)
:
DifferentiableWithinAt π (fun (x : E) => (fβ x, fβ x)) s x
@[simp]
theorem
DifferentiableAt.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{x : E}
{fβ : E β G}
(hfβ : DifferentiableAt π fβ x)
(hfβ : DifferentiableAt π fβ x)
:
DifferentiableAt π (fun (x : E) => (fβ x, fβ x)) x
theorem
DifferentiableOn.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{s : Set E}
{fβ : E β G}
(hfβ : DifferentiableOn π fβ s)
(hfβ : DifferentiableOn π fβ s)
:
DifferentiableOn π (fun (x : E) => (fβ x, fβ x)) s
@[simp]
theorem
Differentiable.prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{fβ : E β G}
(hfβ : Differentiable π fβ)
(hfβ : Differentiable π fβ)
:
Differentiable π fun (x : E) => (fβ x, fβ x)
theorem
DifferentiableAt.fderiv_prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{x : E}
{fβ : E β G}
(hfβ : DifferentiableAt π fβ x)
(hfβ : DifferentiableAt π fβ x)
:
fderiv π (fun (x : E) => (fβ x, fβ x)) x = ContinuousLinearMap.prod (fderiv π fβ x) (fderiv π fβ x)
theorem
DifferentiableWithinAt.fderivWithin_prod
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F}
{x : E}
{s : Set E}
{fβ : E β G}
(hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x)
(hxs : UniqueDiffWithinAt π s x)
:
fderivWithin π (fun (x : E) => (fβ x, fβ x)) s x = ContinuousLinearMap.prod (fderivWithin π fβ s x) (fderivWithin π fβ s x)
theorem
hasStrictFDerivAt_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
HasStrictFDerivAt Prod.fst (ContinuousLinearMap.fst π E F) p
theorem
HasStrictFDerivAt.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasStrictFDerivAt fβ fβ' x)
:
HasStrictFDerivAt (fun (x : E) => (fβ x).1) (ContinuousLinearMap.comp (ContinuousLinearMap.fst π F G) fβ') x
theorem
hasFDerivAtFilter_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{L : Filter (E Γ F)}
:
HasFDerivAtFilter Prod.fst (ContinuousLinearMap.fst π E F) p L
theorem
HasFDerivAtFilter.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{L : Filter E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasFDerivAtFilter fβ fβ' x L)
:
HasFDerivAtFilter (fun (x : E) => (fβ x).1) (ContinuousLinearMap.comp (ContinuousLinearMap.fst π F G) fβ') x L
theorem
hasFDerivAt_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
HasFDerivAt Prod.fst (ContinuousLinearMap.fst π E F) p
theorem
HasFDerivAt.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasFDerivAt fβ fβ' x)
:
HasFDerivAt (fun (x : E) => (fβ x).1) (ContinuousLinearMap.comp (ContinuousLinearMap.fst π F G) fβ') x
theorem
hasFDerivWithinAt_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{s : Set (E Γ F)}
:
HasFDerivWithinAt Prod.fst (ContinuousLinearMap.fst π E F) s p
theorem
HasFDerivWithinAt.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{s : Set E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasFDerivWithinAt fβ fβ' s x)
:
HasFDerivWithinAt (fun (x : E) => (fβ x).1) (ContinuousLinearMap.comp (ContinuousLinearMap.fst π F G) fβ') s x
theorem
differentiableAt_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
DifferentiableAt π Prod.fst p
@[simp]
theorem
DifferentiableAt.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
(h : DifferentiableAt π fβ x)
:
DifferentiableAt π (fun (x : E) => (fβ x).1) x
theorem
differentiable_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
:
Differentiable π Prod.fst
@[simp]
theorem
Differentiable.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F Γ G}
(h : Differentiable π fβ)
:
Differentiable π fun (x : E) => (fβ x).1
theorem
differentiableWithinAt_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{s : Set (E Γ F)}
:
DifferentiableWithinAt π Prod.fst s p
theorem
DifferentiableWithinAt.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{s : Set E}
{fβ : E β F Γ G}
(h : DifferentiableWithinAt π fβ s x)
:
DifferentiableWithinAt π (fun (x : E) => (fβ x).1) s x
theorem
differentiableOn_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set (E Γ F)}
:
DifferentiableOn π Prod.fst s
theorem
DifferentiableOn.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{s : Set E}
{fβ : E β F Γ G}
(h : DifferentiableOn π fβ s)
:
DifferentiableOn π (fun (x : E) => (fβ x).1) s
theorem
fderiv_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
fderiv π Prod.fst p = ContinuousLinearMap.fst π E F
theorem
fderiv.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
(h : DifferentiableAt π fβ x)
:
fderiv π (fun (x : E) => (fβ x).1) x = ContinuousLinearMap.comp (ContinuousLinearMap.fst π F G) (fderiv π fβ x)
theorem
fderivWithin_fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{s : Set (E Γ F)}
(hs : UniqueDiffWithinAt π s p)
:
fderivWithin π Prod.fst s p = ContinuousLinearMap.fst π E F
theorem
fderivWithin.fst
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{s : Set E}
{fβ : E β F Γ G}
(hs : UniqueDiffWithinAt π s x)
(h : DifferentiableWithinAt π fβ s x)
:
fderivWithin π (fun (x : E) => (fβ x).1) s x = ContinuousLinearMap.comp (ContinuousLinearMap.fst π F G) (fderivWithin π fβ s x)
theorem
hasStrictFDerivAt_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
HasStrictFDerivAt Prod.snd (ContinuousLinearMap.snd π E F) p
theorem
HasStrictFDerivAt.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasStrictFDerivAt fβ fβ' x)
:
HasStrictFDerivAt (fun (x : E) => (fβ x).2) (ContinuousLinearMap.comp (ContinuousLinearMap.snd π F G) fβ') x
theorem
hasFDerivAtFilter_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{L : Filter (E Γ F)}
:
HasFDerivAtFilter Prod.snd (ContinuousLinearMap.snd π E F) p L
theorem
HasFDerivAtFilter.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{L : Filter E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasFDerivAtFilter fβ fβ' x L)
:
HasFDerivAtFilter (fun (x : E) => (fβ x).2) (ContinuousLinearMap.comp (ContinuousLinearMap.snd π F G) fβ') x L
theorem
hasFDerivAt_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
HasFDerivAt Prod.snd (ContinuousLinearMap.snd π E F) p
theorem
HasFDerivAt.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasFDerivAt fβ fβ' x)
:
HasFDerivAt (fun (x : E) => (fβ x).2) (ContinuousLinearMap.comp (ContinuousLinearMap.snd π F G) fβ') x
theorem
hasFDerivWithinAt_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{s : Set (E Γ F)}
:
HasFDerivWithinAt Prod.snd (ContinuousLinearMap.snd π E F) s p
theorem
HasFDerivWithinAt.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{s : Set E}
{fβ : E β F Γ G}
{fβ' : E βL[π] F Γ G}
(h : HasFDerivWithinAt fβ fβ' s x)
:
HasFDerivWithinAt (fun (x : E) => (fβ x).2) (ContinuousLinearMap.comp (ContinuousLinearMap.snd π F G) fβ') s x
theorem
differentiableAt_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
DifferentiableAt π Prod.snd p
@[simp]
theorem
DifferentiableAt.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
(h : DifferentiableAt π fβ x)
:
DifferentiableAt π (fun (x : E) => (fβ x).2) x
theorem
differentiable_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
:
Differentiable π Prod.snd
@[simp]
theorem
Differentiable.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{fβ : E β F Γ G}
(h : Differentiable π fβ)
:
Differentiable π fun (x : E) => (fβ x).2
theorem
differentiableWithinAt_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{s : Set (E Γ F)}
:
DifferentiableWithinAt π Prod.snd s p
theorem
DifferentiableWithinAt.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{s : Set E}
{fβ : E β F Γ G}
(h : DifferentiableWithinAt π fβ s x)
:
DifferentiableWithinAt π (fun (x : E) => (fβ x).2) s x
theorem
differentiableOn_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set (E Γ F)}
:
DifferentiableOn π Prod.snd s
theorem
DifferentiableOn.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{s : Set E}
{fβ : E β F Γ G}
(h : DifferentiableOn π fβ s)
:
DifferentiableOn π (fun (x : E) => (fβ x).2) s
theorem
fderiv_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
:
fderiv π Prod.snd p = ContinuousLinearMap.snd π E F
theorem
fderiv.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{fβ : E β F Γ G}
(h : DifferentiableAt π fβ x)
:
fderiv π (fun (x : E) => (fβ x).2) x = ContinuousLinearMap.comp (ContinuousLinearMap.snd π F G) (fderiv π fβ x)
theorem
fderivWithin_snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{p : E Γ F}
{s : Set (E Γ F)}
(hs : UniqueDiffWithinAt π s p)
:
fderivWithin π Prod.snd s p = ContinuousLinearMap.snd π E F
theorem
fderivWithin.snd
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{x : E}
{s : Set E}
{fβ : E β F Γ G}
(hs : UniqueDiffWithinAt π s x)
(h : DifferentiableWithinAt π fβ s x)
:
fderivWithin π (fun (x : E) => (fβ x).2) s x = ContinuousLinearMap.comp (ContinuousLinearMap.snd π F G) (fderivWithin π fβ s x)
theorem
HasStrictFDerivAt.prodMap
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
{f : E β F}
{f' : E βL[π] F}
{fβ : G β G'}
{fβ' : G βL[π] G'}
(p : E Γ G)
(hf : HasStrictFDerivAt f f' p.1)
(hfβ : HasStrictFDerivAt fβ fβ' p.2)
:
HasStrictFDerivAt (Prod.map f fβ) (ContinuousLinearMap.prodMap f' fβ') p
theorem
HasFDerivAt.prodMap
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
{f : E β F}
{f' : E βL[π] F}
{fβ : G β G'}
{fβ' : G βL[π] G'}
(p : E Γ G)
(hf : HasFDerivAt f f' p.1)
(hfβ : HasFDerivAt fβ fβ' p.2)
:
HasFDerivAt (Prod.map f fβ) (ContinuousLinearMap.prodMap f' fβ') p
@[simp]
theorem
DifferentiableAt.prod_map
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{G : Type u_4}
[NormedAddCommGroup G]
[NormedSpace π G]
{G' : Type u_5}
[NormedAddCommGroup G']
[NormedSpace π G']
{f : E β F}
{fβ : G β G'}
(p : E Γ G)
(hf : DifferentiableAt π f p.1)
(hfβ : DifferentiableAt π fβ p.2)
:
DifferentiableAt π (fun (p : E Γ G) => (f p.1, fβ p.2)) p
Derivatives of functions f : E β Ξ i, F' i
#
In this section we formulate has*FDeriv*_pi
theorems as iff
s, and provide two versions of each
theorem:
- the version without
'
deals withΟ : Ξ i, E β F' i
andΟ' : Ξ i, E βL[π] F' i
and is designed to deduce differentiability offun x i β¦ Ο i x
from differentiability of eachΟ i
; - the version with
'
deals withΞ¦ : E β Ξ i, F' i
andΞ¦' : E βL[π] Ξ i, F' i
and is designed to deduce differentiability of the componentsfun x β¦ Ξ¦ x i
from differentiability ofΦ
.
@[simp]
theorem
hasStrictFDerivAt_pi'
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
{Ξ¦' : E βL[π] (i : ΞΉ) β F' i}
:
HasStrictFDerivAt Ξ¦ Ξ¦' x β β (i : ΞΉ), HasStrictFDerivAt (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp (ContinuousLinearMap.proj i) Ξ¦') x
@[simp]
theorem
hasStrictFDerivAt_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ο : (i : ΞΉ) β E β F' i}
{Ο' : (i : ΞΉ) β E βL[π] F' i}
:
HasStrictFDerivAt (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi Ο') x β β (i : ΞΉ), HasStrictFDerivAt (Ο i) (Ο' i) x
@[simp]
theorem
hasFDerivAtFilter_pi'
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{L : Filter E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
{Ξ¦' : E βL[π] (i : ΞΉ) β F' i}
:
HasFDerivAtFilter Ξ¦ Ξ¦' x L β β (i : ΞΉ), HasFDerivAtFilter (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp (ContinuousLinearMap.proj i) Ξ¦') x L
theorem
hasFDerivAtFilter_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{L : Filter E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ο : (i : ΞΉ) β E β F' i}
{Ο' : (i : ΞΉ) β E βL[π] F' i}
:
HasFDerivAtFilter (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi Ο') x L β β (i : ΞΉ), HasFDerivAtFilter (Ο i) (Ο' i) x L
@[simp]
theorem
hasFDerivAt_pi'
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
{Ξ¦' : E βL[π] (i : ΞΉ) β F' i}
:
HasFDerivAt Ξ¦ Ξ¦' x β β (i : ΞΉ), HasFDerivAt (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp (ContinuousLinearMap.proj i) Ξ¦') x
theorem
hasFDerivAt_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ο : (i : ΞΉ) β E β F' i}
{Ο' : (i : ΞΉ) β E βL[π] F' i}
:
HasFDerivAt (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi Ο') x β β (i : ΞΉ), HasFDerivAt (Ο i) (Ο' i) x
@[simp]
theorem
hasFDerivWithinAt_pi'
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{s : Set E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
{Ξ¦' : E βL[π] (i : ΞΉ) β F' i}
:
HasFDerivWithinAt Ξ¦ Ξ¦' s x β β (i : ΞΉ), HasFDerivWithinAt (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp (ContinuousLinearMap.proj i) Ξ¦') s x
theorem
hasFDerivWithinAt_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{s : Set E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ο : (i : ΞΉ) β E β F' i}
{Ο' : (i : ΞΉ) β E βL[π] F' i}
:
HasFDerivWithinAt (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi Ο') s x β β (i : ΞΉ), HasFDerivWithinAt (Ο i) (Ο' i) s x
@[simp]
theorem
differentiableWithinAt_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{s : Set E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
:
DifferentiableWithinAt π Ξ¦ s x β β (i : ΞΉ), DifferentiableWithinAt π (fun (x : E) => Ξ¦ x i) s x
@[simp]
theorem
differentiableAt_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
:
DifferentiableAt π Ξ¦ x β β (i : ΞΉ), DifferentiableAt π (fun (x : E) => Ξ¦ x i) x
theorem
differentiableOn_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{s : Set E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
:
DifferentiableOn π Ξ¦ s β β (i : ΞΉ), DifferentiableOn π (fun (x : E) => Ξ¦ x i) s
theorem
differentiable_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ξ¦ : E β (i : ΞΉ) β F' i}
:
Differentiable π Ξ¦ β β (i : ΞΉ), Differentiable π fun (x : E) => Ξ¦ x i
theorem
fderivWithin_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{s : Set E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ο : (i : ΞΉ) β E β F' i}
(h : β (i : ΞΉ), DifferentiableWithinAt π (Ο i) s x)
(hs : UniqueDiffWithinAt π s x)
:
fderivWithin π (fun (x : E) (i : ΞΉ) => Ο i x) s x = ContinuousLinearMap.pi fun (i : ΞΉ) => fderivWithin π (Ο i) s x
theorem
fderiv_pi
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{x : E}
{ΞΉ : Type u_6}
[Fintype ΞΉ]
{F' : ΞΉ β Type u_7}
[(i : ΞΉ) β NormedAddCommGroup (F' i)]
[(i : ΞΉ) β NormedSpace π (F' i)]
{Ο : (i : ΞΉ) β E β F' i}
(h : β (i : ΞΉ), DifferentiableAt π (Ο i) x)
:
fderiv π (fun (x : E) (i : ΞΉ) => Ο i x) x = ContinuousLinearMap.pi fun (i : ΞΉ) => fderiv π (Ο i) x