Radon's theorem on convex sets #
Radon's theorem states that any affine dependent set can be partitioned into two sets whose convex hulls intersect.
Tags #
convex hull, radon, affine independence
theorem
radon_partition
{ฮน : Type u_1}
{๐ : Type u_2}
{E : Type u_3}
[LinearOrderedField ๐]
[AddCommGroup E]
[Module ๐ E]
{f : ฮน โ E}
(h : ยฌAffineIndependent ๐ f)
:
โ (I : Set ฮน), Set.Nonempty ((convexHull ๐) (f '' I) โฉ (convexHull ๐) (f '' Iแถ))
Radon theorem on convex sets: Any family f
of affine dependent vectors contains a set I
with the property that convex hulls of I
and Iแถ
intersect.