Documentation

Mathlib.Analysis.Fourier.FourierTransformDeriv

Derivative of the Fourier transform #

In this file we compute the FrΓ©chet derivative of 𝓕 f, where f is a function such that both f and v ↦ β€–vβ€– * β€–f vβ€– are integrable. Here 𝓕 is understood as an operator (V β†’ E) β†’ (W β†’ E), where V and W are normed ℝ-vector spaces and the Fourier transform is taken with respect to a continuous ℝ-bilinear pairing L : V Γ— W β†’ ℝ.

We also give a separate lemma for the most common case when V = W = ℝ and L is the obvious multiplication map.

theorem Real.hasDerivAt_fourierChar (x : ℝ) :
HasDerivAt (fun (y : ℝ) => ↑(Real.fourierChar (Multiplicative.ofAdd y))) (2 * ↑Real.pi * Complex.I * ↑(Real.fourierChar (Multiplicative.ofAdd x))) x

Send a function f : V β†’ E to the function f : V β†’ Hom (W, E) given by v ↦ (w ↦ -2 * Ο€ * I * L(v, w) β€’ f v).

Equations
Instances For
    theorem VectorFourier.hasFDerivAt_fourier_transform_integrand_right {E : Type u_1} [NormedAddCommGroup E] [NormedSpace β„‚ E] {V : Type u_2} {W : Type u_3} [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedAddCommGroup W] [NormedSpace ℝ W] (L : V β†’L[ℝ] W β†’L[ℝ] ℝ) (f : V β†’ E) (v : V) (w : W) :
    HasFDerivAt (fun (w' : W) => ↑(Real.fourierChar (Multiplicative.ofAdd (-(L v) w'))) β€’ f v) (↑(Real.fourierChar (Multiplicative.ofAdd (-(L v) w))) β€’ VectorFourier.mul_L L f v) w

    The w-derivative of the Fourier transform integrand.

    Norm of the w-derivative of the Fourier transform integrand.

    Main theorem of this section: if both f and x ↦ β€–xβ€– * β€–f xβ€– are integrable, then the Fourier transform of f has a FrΓ©chet derivative (everywhere in its domain) and its derivative is the Fourier transform of mul_L L f.

    @[inline, reducible]

    Notation for the Fourier transform on a real inner product space

    Equations
    Instances For

      The FrΓ©chet derivative of the Fourier transform of f is the Fourier transform of fun v ↦ ((-2 * Ο€ * I) β€’ f v) βŠ— (innerSL ℝ v).