Documentation

Mathlib.Analysis.LocallyConvex.Bounded

Von Neumann Boundedness #

This file defines natural or von Neumann bounded sets and proves elementary properties.

Main declarations #

Main results #

References #

def Bornology.IsVonNBounded (๐•œ : Type u_1) {E : Type u_3} [SeminormedRing ๐•œ] [SMul ๐•œ E] [Zero E] [TopologicalSpace E] (s : Set E) :

A set s is von Neumann bounded if every neighborhood of 0 absorbs s.

Equations
Instances For
    @[simp]
    theorem Bornology.isVonNBounded_empty (๐•œ : Type u_1) (E : Type u_3) [SeminormedRing ๐•œ] [SMul ๐•œ E] [Zero E] [TopologicalSpace E] :
    theorem Bornology.isVonNBounded_iff {๐•œ : Type u_1} {E : Type u_3} [SeminormedRing ๐•œ] [SMul ๐•œ E] [Zero E] [TopologicalSpace E] (s : Set E) :
    Bornology.IsVonNBounded ๐•œ s โ†” โˆ€ V โˆˆ nhds 0, Absorbs ๐•œ V s
    theorem Filter.HasBasis.isVonNBounded_iff {๐•œ : Type u_1} {E : Type u_3} {ฮน : Type u_6} [SeminormedRing ๐•œ] [SMul ๐•œ E] [Zero E] [TopologicalSpace E] {q : ฮน โ†’ Prop} {s : ฮน โ†’ Set E} {A : Set E} (h : Filter.HasBasis (nhds 0) q s) :
    Bornology.IsVonNBounded ๐•œ A โ†” โˆ€ (i : ฮน), q i โ†’ Absorbs ๐•œ (s i) A
    @[deprecated Filter.HasBasis.isVonNBounded_iff]
    theorem Filter.HasBasis.isVonNBounded_basis_iff {๐•œ : Type u_1} {E : Type u_3} {ฮน : Type u_6} [SeminormedRing ๐•œ] [SMul ๐•œ E] [Zero E] [TopologicalSpace E] {q : ฮน โ†’ Prop} {s : ฮน โ†’ Set E} {A : Set E} (h : Filter.HasBasis (nhds 0) q s) :
    Bornology.IsVonNBounded ๐•œ A โ†” โˆ€ (i : ฮน), q i โ†’ Absorbs ๐•œ (s i) A

    Alias of Filter.HasBasis.isVonNBounded_iff.

    theorem Bornology.IsVonNBounded.subset {๐•œ : Type u_1} {E : Type u_3} [SeminormedRing ๐•œ] [SMul ๐•œ E] [Zero E] [TopologicalSpace E] {sโ‚ : Set E} {sโ‚‚ : Set E} (h : sโ‚ โŠ† sโ‚‚) (hsโ‚‚ : Bornology.IsVonNBounded ๐•œ sโ‚‚) :
    Bornology.IsVonNBounded ๐•œ sโ‚

    Subsets of bounded sets are bounded.

    theorem Bornology.IsVonNBounded.union {๐•œ : Type u_1} {E : Type u_3} [SeminormedRing ๐•œ] [SMul ๐•œ E] [Zero E] [TopologicalSpace E] {sโ‚ : Set E} {sโ‚‚ : Set E} (hsโ‚ : Bornology.IsVonNBounded ๐•œ sโ‚) (hsโ‚‚ : Bornology.IsVonNBounded ๐•œ sโ‚‚) :
    Bornology.IsVonNBounded ๐•œ (sโ‚ โˆช sโ‚‚)

    The union of two bounded sets is bounded.

    theorem Bornology.IsVonNBounded.of_topologicalSpace_le {๐•œ : Type u_1} {E : Type u_3} [SeminormedRing ๐•œ] [AddCommGroup E] [Module ๐•œ E] {t : TopologicalSpace E} {t' : TopologicalSpace E} (h : t โ‰ค t') {s : Set E} (hs : Bornology.IsVonNBounded ๐•œ s) :

    If a topology t' is coarser than t, then any set s that is bounded with respect to t is bounded with respect to t'.

    theorem Bornology.IsVonNBounded.image {E : Type u_3} {F : Type u_5} {๐•œโ‚ : Type u_7} {๐•œโ‚‚ : Type u_8} [NormedDivisionRing ๐•œโ‚] [NormedDivisionRing ๐•œโ‚‚] [AddCommGroup E] [Module ๐•œโ‚ E] [AddCommGroup F] [Module ๐•œโ‚‚ F] [TopologicalSpace E] [TopologicalSpace F] {ฯƒ : ๐•œโ‚ โ†’+* ๐•œโ‚‚} [RingHomSurjective ฯƒ] [RingHomIsometric ฯƒ] {s : Set E} (hs : Bornology.IsVonNBounded ๐•œโ‚ s) (f : E โ†’SL[ฯƒ] F) :
    Bornology.IsVonNBounded ๐•œโ‚‚ (โ‡‘f '' s)

    A continuous linear image of a bounded set is bounded.

    theorem Bornology.IsVonNBounded.smul_tendsto_zero {๐•œ : Type u_1} {E : Type u_3} {ฮน : Type u_6} [NormedField ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] {S : Set E} {ฮต : ฮน โ†’ ๐•œ} {x : ฮน โ†’ E} {l : Filter ฮน} (hS : Bornology.IsVonNBounded ๐•œ S) (hxS : โˆ€แถ  (n : ฮน) in l, x n โˆˆ S) (hฮต : Filter.Tendsto ฮต l (nhds 0)) :
    Filter.Tendsto (ฮต โ€ข x) l (nhds 0)
    theorem Bornology.isVonNBounded_of_smul_tendsto_zero {E : Type u_3} {ฮน : Type u_6} {๐• : Type u_7} [NontriviallyNormedField ๐•] [AddCommGroup E] [Module ๐• E] [TopologicalSpace E] [ContinuousSMul ๐• E] {ฮต : ฮน โ†’ ๐•} {l : Filter ฮน} [Filter.NeBot l] (hฮต : โˆ€แถ  (n : ฮน) in l, ฮต n โ‰  0) {S : Set E} (H : โˆ€ (x : ฮน โ†’ E), (โˆ€ (n : ฮน), x n โˆˆ S) โ†’ Filter.Tendsto (ฮต โ€ข x) l (nhds 0)) :
    theorem Bornology.isVonNBounded_iff_smul_tendsto_zero {E : Type u_3} {ฮน : Type u_6} {๐• : Type u_7} [NontriviallyNormedField ๐•] [AddCommGroup E] [Module ๐• E] [TopologicalSpace E] [ContinuousSMul ๐• E] {ฮต : ฮน โ†’ ๐•} {l : Filter ฮน} [Filter.NeBot l] (hฮต : Filter.Tendsto ฮต l (nhdsWithin 0 {0}แถœ)) {S : Set E} :
    Bornology.IsVonNBounded ๐• S โ†” โˆ€ (x : ฮน โ†’ E), (โˆ€ (n : ฮน), x n โˆˆ S) โ†’ Filter.Tendsto (ฮต โ€ข x) l (nhds 0)

    Given any sequence ฮต of scalars which tends to ๐“[โ‰ ] 0, we have that a set S is bounded if and only if for any sequence x : โ„• โ†’ S, ฮต โ€ข x tends to 0. This actually works for any indexing type ฮน, but in the special case ฮน = โ„• we get the important fact that convergent sequences fully characterize bounded sets.

    theorem Bornology.isVonNBounded_singleton {๐•œ : Type u_1} {E : Type u_3} [NormedField ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] (x : E) :

    Singletons are bounded.

    theorem Bornology.isVonNBounded_covers {๐•œ : Type u_1} {E : Type u_3} [NormedField ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] :

    The union of all bounded set is the whole space.

    @[reducible]
    def Bornology.vonNBornology (๐•œ : Type u_1) (E : Type u_3) [NormedField ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] :

    The von Neumann bornology defined by the von Neumann bounded sets.

    Note that this is not registered as an instance, in order to avoid diamonds with the metric bornology.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem Bornology.isBounded_iff_isVonNBounded (๐•œ : Type u_1) {E : Type u_3} [NormedField ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [ContinuousSMul ๐•œ E] {s : Set E} :
      theorem TotallyBounded.isVonNBounded (๐•œ : Type u_1) {E : Type u_3} [NontriviallyNormedField ๐•œ] [AddCommGroup E] [Module ๐•œ E] [UniformSpace E] [UniformAddGroup E] [ContinuousSMul ๐•œ E] {s : Set E} (hs : TotallyBounded s) :
      theorem NormedSpace.isVonNBounded_ball (๐•œ : Type u_1) (E : Type u_3) [NontriviallyNormedField ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] (r : โ„) :
      theorem NormedSpace.isVonNBounded_iff' (๐•œ : Type u_1) (E : Type u_3) [NontriviallyNormedField ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] (s : Set E) :
      Bornology.IsVonNBounded ๐•œ s โ†” โˆƒ (r : โ„), โˆ€ x โˆˆ s, โ€–xโ€– โ‰ค r
      theorem NormedSpace.image_isVonNBounded_iff (๐•œ : Type u_1) (E : Type u_3) {E' : Type u_4} [NontriviallyNormedField ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] (f : E' โ†’ E) (s : Set E') :
      Bornology.IsVonNBounded ๐•œ (f '' s) โ†” โˆƒ (r : โ„), โˆ€ x โˆˆ s, โ€–f xโ€– โ‰ค r
      theorem NormedSpace.vonNBornology_eq (๐•œ : Type u_1) (E : Type u_3) [NontriviallyNormedField ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] :
      Bornology.vonNBornology ๐•œ E = PseudoMetricSpace.toBornology

      In a normed space, the von Neumann bornology (Bornology.vonNBornology) is equal to the metric bornology.

      theorem NormedSpace.isBounded_iff_subset_smul_ball (๐•œ : Type u_1) (E : Type u_3) [NontriviallyNormedField ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} :
      Bornology.IsBounded s โ†” โˆƒ (a : ๐•œ), s โŠ† a โ€ข Metric.ball 0 1
      theorem NormedSpace.isBounded_iff_subset_smul_closedBall (๐•œ : Type u_1) (E : Type u_3) [NontriviallyNormedField ๐•œ] [SeminormedAddCommGroup E] [NormedSpace ๐•œ E] {s : Set E} :
      Bornology.IsBounded s โ†” โˆƒ (a : ๐•œ), s โŠ† a โ€ข Metric.closedBall 0 1