Completion of normed group homs #
Given two (semi) normed groups G
and H
and a normed group hom f : NormedAddGroupHom G H
,
we build and study a normed group hom
f.completion : NormedAddGroupHom (completion G) (completion H)
such that the diagram
f
G -----------> H
| |
| |
| |
V V
completion G -----------> completion H
f.completion
commutes. The map itself comes from the general theory of completion of uniform spaces, but here we want a normed group hom, study its operator norm and kernel.
The vertical maps in the above diagrams are also normed group homs constructed in this file.
Main definitions and results: #
NormedAddGroupHom.completion
: see the discussion above.NormedAddCommGroup.toCompl : NormedAddGroupHom G (completion G)
: the canonical map fromG
to its completion, as a normed group homNormedAddGroupHom.completion_toCompl
: the above diagram indeed commutes.NormedAddGroupHom.norm_completion
:‖f.completion‖ = ‖f‖
NormedAddGroupHom.ker_le_ker_completion
: the kernel off.completion
contains the image of the kernel off
.NormedAddGroupHom.ker_completion
: the kernel off.completion
is the closure of the image of the kernel off
under an assumption thatf
is quantitatively surjective onto its image.NormedAddGroupHom.extension
: ifH
is complete, the extension off : NormedAddGroupHom G H
to aNormedAddGroupHom (completion G) H
.
def
NormedAddGroupHom.completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
The normed group hom induced between completions.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
NormedAddGroupHom.completion_def
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(x : UniformSpace.Completion G)
:
(NormedAddGroupHom.completion f) x = UniformSpace.Completion.map (⇑f) x
@[simp]
theorem
NormedAddGroupHom.completion_coe_to_fun
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.completion_coe
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(g : G)
:
(NormedAddGroupHom.completion f) (↑G g) = ↑H (f g)
@[simp]
theorem
NormedAddGroupHom.completion_coe'
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(g : G)
:
UniformSpace.Completion.map (⇑f) (↑G g) = ↑H (f g)
@[simp]
theorem
normedAddGroupHomCompletionHom_apply
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
normedAddGroupHomCompletionHom f = NormedAddGroupHom.completion f
def
normedAddGroupHomCompletionHom
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
:
Completion of normed group homs as a normed group hom.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
NormedAddGroupHom.completion_comp
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
{K : Type u_3}
[SeminormedAddCommGroup K]
(f : NormedAddGroupHom G H)
(g : NormedAddGroupHom H K)
:
theorem
NormedAddGroupHom.completion_neg
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.completion_add
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(g : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.completion_sub
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
(g : NormedAddGroupHom G H)
:
@[simp]
theorem
NormedAddGroupHom.zero_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
:
@[simp]
theorem
NormedAddCommGroup.toCompl_apply
{G : Type u_1}
[SeminormedAddCommGroup G]
:
∀ (a : G), NormedAddCommGroup.toCompl a = ↑G a
The map from a normed group to its completion, as a normed group hom.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
NormedAddCommGroup.denseRange_toCompl
{G : Type u_1}
[SeminormedAddCommGroup G]
:
DenseRange ⇑NormedAddCommGroup.toCompl
@[simp]
theorem
NormedAddGroupHom.completion_toCompl
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
NormedAddGroupHom.comp (NormedAddGroupHom.completion f) NormedAddCommGroup.toCompl = NormedAddGroupHom.comp NormedAddCommGroup.toCompl f
@[simp]
theorem
NormedAddGroupHom.norm_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.ker_le_ker_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
(f : NormedAddGroupHom G H)
:
NormedAddGroupHom.range
(NormedAddGroupHom.comp NormedAddCommGroup.toCompl (NormedAddGroupHom.incl (NormedAddGroupHom.ker f))) ≤ NormedAddGroupHom.ker (NormedAddGroupHom.completion f)
theorem
NormedAddGroupHom.ker_completion
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
{f : NormedAddGroupHom G H}
{C : ℝ}
(h : NormedAddGroupHom.SurjectiveOnWith f (NormedAddGroupHom.range f) C)
:
↑(NormedAddGroupHom.ker (NormedAddGroupHom.completion f)) = closure
↑(NormedAddGroupHom.range
(NormedAddGroupHom.comp NormedAddCommGroup.toCompl (NormedAddGroupHom.incl (NormedAddGroupHom.ker f))))
def
NormedAddGroupHom.extension
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[SeparatedSpace H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
:
If H
is complete, the extension of f : NormedAddGroupHom G H
to a
NormedAddGroupHom (completion G) H
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
NormedAddGroupHom.extension_def
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[SeparatedSpace H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
(v : G)
:
(NormedAddGroupHom.extension f) (↑G v) = UniformSpace.Completion.extension (⇑f) (↑G v)
@[simp]
theorem
NormedAddGroupHom.extension_coe
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[SeparatedSpace H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
(v : G)
:
(NormedAddGroupHom.extension f) (↑G v) = f v
theorem
NormedAddGroupHom.extension_coe_to_fun
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[SeparatedSpace H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
:
theorem
NormedAddGroupHom.extension_unique
{G : Type u_1}
[SeminormedAddCommGroup G]
{H : Type u_2}
[SeminormedAddCommGroup H]
[SeparatedSpace H]
[CompleteSpace H]
(f : NormedAddGroupHom G H)
{g : NormedAddGroupHom (UniformSpace.Completion G) H}
(hg : ∀ (v : G), f v = g (↑G v))
: