The category of seminormed groups #
We define SemiNormedGroupCat
, the category of seminormed groups and normed group homs between
them, as well as SemiNormedGroupCat₁
, the subcategory of norm non-increasing morphisms.
The category of seminormed abelian groups and bounded group homomorphisms.
Instances For
Equations
- SemiNormedGroupCat.instCoeSortSemiNormedGroupCatType = { coe := fun (X : SemiNormedGroupCat) => ↑X }
Construct a bundled SemiNormedGroupCat
from the underlying type and typeclass.
Equations
Instances For
Equations
Equations
- One or more equations did not get rendered due to their size.
instance
SemiNormedGroupCat.toAddMonoidHomClass
{V : SemiNormedGroupCat}
{W : SemiNormedGroupCat}
:
AddMonoidHomClass (V ⟶ W) ↑V ↑W
Equations
- (_ : AddMonoidHomClass (V ⟶ W) ↑V ↑W) = (_ : AddMonoidHomClass (V ⟶ W) ↑V ↑W)
theorem
SemiNormedGroupCat.ext
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
{f₁ : M ⟶ N}
{f₂ : M ⟶ N}
(h : ∀ (x : ↑M), f₁ x = f₂ x)
:
f₁ = f₂
@[simp]
theorem
SemiNormedGroupCat.coe_of
(V : Type u)
[SeminormedAddCommGroup V]
:
↑(SemiNormedGroupCat.of V) = V
@[simp]
theorem
SemiNormedGroupCat.coe_id
(V : SemiNormedGroupCat)
:
⇑(CategoryTheory.CategoryStruct.id V) = id
@[simp]
theorem
SemiNormedGroupCat.coe_comp
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
{K : SemiNormedGroupCat}
(f : M ⟶ N)
(g : N ⟶ K)
:
⇑(CategoryTheory.CategoryStruct.comp f g) = ⇑g ∘ ⇑f
Equations
instance
SemiNormedGroupCat.instZeroHomSemiNormedGroupCatToQuiverToCategoryStructInstSemiNormedGroupCatLargeCategory
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
:
Equations
- SemiNormedGroupCat.instZeroHomSemiNormedGroupCatToQuiverToCategoryStructInstSemiNormedGroupCatLargeCategory = NormedAddGroupHom.zero
@[simp]
theorem
SemiNormedGroupCat.zero_apply
{V : SemiNormedGroupCat}
{W : SemiNormedGroupCat}
(x : ↑V)
:
0 x = 0
instance
SemiNormedGroupCat.instHasZeroMorphismsSemiNormedGroupCatInstSemiNormedGroupCatLargeCategory :
Equations
- SemiNormedGroupCat.instHasZeroMorphismsSemiNormedGroupCatInstSemiNormedGroupCatLargeCategory = CategoryTheory.Limits.HasZeroMorphisms.mk
theorem
SemiNormedGroupCat.iso_isometry_of_normNoninc
{V : SemiNormedGroupCat}
{W : SemiNormedGroupCat}
(i : V ≅ W)
(h1 : NormedAddGroupHom.NormNoninc i.hom)
(h2 : NormedAddGroupHom.NormNoninc i.inv)
:
Isometry ⇑i.hom
SemiNormedGroupCat₁
is a type synonym for SemiNormedGroupCat
,
which we shall equip with the category structure consisting only of the norm non-increasing maps.
Instances For
Equations
- SemiNormedGroupCat₁.instCoeSortSemiNormedGroupCat₁Type = { coe := fun (X : SemiNormedGroupCat₁) => ↑X }
Equations
- SemiNormedGroupCat₁.instLargeCategorySemiNormedGroupCat₁ = CategoryTheory.Category.mk
Equations
- One or more equations did not get rendered due to their size.
theorem
SemiNormedGroupCat₁.hom_ext
{M : SemiNormedGroupCat₁}
{N : SemiNormedGroupCat₁}
(f : M ⟶ N)
(g : M ⟶ N)
(w : ⇑f = ⇑g)
:
f = g
instance
SemiNormedGroupCat₁.instConcreteCategorySemiNormedGroupCat₁InstLargeCategorySemiNormedGroupCat₁ :
Equations
- One or more equations did not get rendered due to their size.
instance
SemiNormedGroupCat₁.toAddMonoidHomClass
{V : SemiNormedGroupCat₁}
{W : SemiNormedGroupCat₁}
:
AddMonoidHomClass (V ⟶ W) ↑V ↑W
Equations
- (_ : AddMonoidHomClass (V ⟶ W) ↑V ↑W) = (_ : AddMonoidHomClass (V ⟶ W) ↑V ↑W)
Construct a bundled SemiNormedGroupCat₁
from the underlying type and typeclass.
Equations
Instances For
Equations
def
SemiNormedGroupCat₁.mkHom
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
(f : M ⟶ N)
(i : NormedAddGroupHom.NormNoninc f)
:
Promote a morphism in SemiNormedGroupCat
to a morphism in SemiNormedGroupCat₁
.
Equations
- SemiNormedGroupCat₁.mkHom f i = { val := f, property := i }
Instances For
theorem
SemiNormedGroupCat₁.mkHom_apply
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
(f : M ⟶ N)
(i : NormedAddGroupHom.NormNoninc f)
(x : ↑(SemiNormedGroupCat₁.of ↑M))
:
(SemiNormedGroupCat₁.mkHom f i) x = f x
@[simp]
theorem
SemiNormedGroupCat₁.mkIso_inv
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
(f : M ≅ N)
(i : NormedAddGroupHom.NormNoninc f.hom)
(i' : NormedAddGroupHom.NormNoninc f.inv)
:
(SemiNormedGroupCat₁.mkIso f i i').inv = SemiNormedGroupCat₁.mkHom f.inv i'
@[simp]
theorem
SemiNormedGroupCat₁.mkIso_hom
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
(f : M ≅ N)
(i : NormedAddGroupHom.NormNoninc f.hom)
(i' : NormedAddGroupHom.NormNoninc f.inv)
:
(SemiNormedGroupCat₁.mkIso f i i').hom = SemiNormedGroupCat₁.mkHom f.hom i
def
SemiNormedGroupCat₁.mkIso
{M : SemiNormedGroupCat}
{N : SemiNormedGroupCat}
(f : M ≅ N)
(i : NormedAddGroupHom.NormNoninc f.hom)
(i' : NormedAddGroupHom.NormNoninc f.inv)
:
Promote an isomorphism in SemiNormedGroupCat
to an isomorphism in SemiNormedGroupCat₁
.
Equations
- SemiNormedGroupCat₁.mkIso f i i' = CategoryTheory.Iso.mk (SemiNormedGroupCat₁.mkHom f.hom i) (SemiNormedGroupCat₁.mkHom f.inv i')
Instances For
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
SemiNormedGroupCat₁.coe_of
(V : Type u)
[SeminormedAddCommGroup V]
:
↑(SemiNormedGroupCat₁.of V) = V
@[simp]
theorem
SemiNormedGroupCat₁.coe_id
(V : SemiNormedGroupCat₁)
:
⇑(CategoryTheory.CategoryStruct.id V) = id
@[simp]
theorem
SemiNormedGroupCat₁.coe_comp
{M : SemiNormedGroupCat₁}
{N : SemiNormedGroupCat₁}
{K : SemiNormedGroupCat₁}
(f : M ⟶ N)
(g : N ⟶ K)
:
⇑(CategoryTheory.CategoryStruct.comp f g) = ⇑g ∘ ⇑f
Equations
instance
SemiNormedGroupCat₁.instZeroHomSemiNormedGroupCat₁ToQuiverToCategoryStructInstLargeCategorySemiNormedGroupCat₁
(X : SemiNormedGroupCat₁)
(Y : SemiNormedGroupCat₁)
:
Equations
- SemiNormedGroupCat₁.instZeroHomSemiNormedGroupCat₁ToQuiverToCategoryStructInstLargeCategorySemiNormedGroupCat₁ X Y = { zero := { val := 0, property := (_ : NormedAddGroupHom.NormNoninc 0) } }
@[simp]
theorem
SemiNormedGroupCat₁.zero_apply
{V : SemiNormedGroupCat₁}
{W : SemiNormedGroupCat₁}
(x : ↑V)
:
0 x = 0
instance
SemiNormedGroupCat₁.instHasZeroMorphismsSemiNormedGroupCat₁InstLargeCategorySemiNormedGroupCat₁ :
Equations
- SemiNormedGroupCat₁.instHasZeroMorphismsSemiNormedGroupCat₁InstLargeCategorySemiNormedGroupCat₁ = CategoryTheory.Limits.HasZeroMorphisms.mk
theorem
SemiNormedGroupCat₁.iso_isometry
{V : SemiNormedGroupCat₁}
{W : SemiNormedGroupCat₁}
(i : V ≅ W)
:
Isometry ⇑i.hom