Documentation

Mathlib.Analysis.Normed.Order.UpperLower

Upper/lower/order-connected sets in normed groups #

The topological closure and interior of an upper/lower/order-connected set is an upper/lower/order-connected set (with the notable exception of the closure of an order-connected set).

We also prove lemmas specific to ℝⁿ. Those are helpful to prove that order-connected sets in ℝⁿ are measurable.

theorem IsUpperSet.thickening {α : Type u_1} [NormedOrderedAddGroup α] {s : Set α} (hs : IsUpperSet s) (ε : ) :
theorem IsUpperSet.thickening' {α : Type u_1} [NormedOrderedGroup α] {s : Set α} (hs : IsUpperSet s) (ε : ) :
theorem IsLowerSet.thickening {α : Type u_1} [NormedOrderedAddGroup α] {s : Set α} (hs : IsLowerSet s) (ε : ) :
theorem IsLowerSet.thickening' {α : Type u_1} [NormedOrderedGroup α] {s : Set α} (hs : IsLowerSet s) (ε : ) :
theorem IsUpperSet.cthickening' {α : Type u_1} [NormedOrderedGroup α] {s : Set α} (hs : IsUpperSet s) (ε : ) :
theorem IsLowerSet.cthickening' {α : Type u_1} [NormedOrderedGroup α] {s : Set α} (hs : IsLowerSet s) (ε : ) :

ℝⁿ #

theorem IsUpperSet.mem_interior_of_forall_lt {ι : Type u_2} [Finite ι] {s : Set (ι)} {x : ι} {y : ι} (hs : IsUpperSet s) (hx : x closure s) (h : ∀ (i : ι), x i < y i) :
theorem IsLowerSet.mem_interior_of_forall_lt {ι : Type u_2} [Finite ι] {s : Set (ι)} {x : ι} {y : ι} (hs : IsLowerSet s) (hx : x closure s) (h : ∀ (i : ι), y i < x i) :
theorem IsUpperSet.exists_subset_ball {ι : Type u_2} [Fintype ι] {s : Set (ι)} {x : ι} {δ : } (hs : IsUpperSet s) (hx : x closure s) (hδ : 0 < δ) :
∃ (y : ι), Metric.closedBall y (δ / 4) Metric.closedBall x δ Metric.closedBall y (δ / 4) interior s
theorem IsLowerSet.exists_subset_ball {ι : Type u_2} [Fintype ι] {s : Set (ι)} {x : ι} {δ : } (hs : IsLowerSet s) (hx : x closure s) (hδ : 0 < δ) :
∃ (y : ι), Metric.closedBall y (δ / 4) Metric.closedBall x δ Metric.closedBall y (δ / 4) interior s