Upper/lower/order-connected sets in normed groups #
The topological closure and interior of an upper/lower/order-connected set is an upper/lower/order-connected set (with the notable exception of the closure of an order-connected set).
We also prove lemmas specific to ℝⁿ
. Those are helpful to prove that order-connected sets in ℝⁿ
are measurable.
theorem
IsUpperSet.thickening
{α : Type u_1}
[NormedOrderedAddGroup α]
{s : Set α}
(hs : IsUpperSet s)
(ε : ℝ)
:
IsUpperSet (Metric.thickening ε s)
theorem
IsUpperSet.thickening'
{α : Type u_1}
[NormedOrderedGroup α]
{s : Set α}
(hs : IsUpperSet s)
(ε : ℝ)
:
IsUpperSet (Metric.thickening ε s)
theorem
IsLowerSet.thickening
{α : Type u_1}
[NormedOrderedAddGroup α]
{s : Set α}
(hs : IsLowerSet s)
(ε : ℝ)
:
IsLowerSet (Metric.thickening ε s)
theorem
IsLowerSet.thickening'
{α : Type u_1}
[NormedOrderedGroup α]
{s : Set α}
(hs : IsLowerSet s)
(ε : ℝ)
:
IsLowerSet (Metric.thickening ε s)
theorem
IsUpperSet.cthickening
{α : Type u_1}
[NormedOrderedAddGroup α]
{s : Set α}
(hs : IsUpperSet s)
(ε : ℝ)
:
IsUpperSet (Metric.cthickening ε s)
theorem
IsUpperSet.cthickening'
{α : Type u_1}
[NormedOrderedGroup α]
{s : Set α}
(hs : IsUpperSet s)
(ε : ℝ)
:
IsUpperSet (Metric.cthickening ε s)
theorem
IsLowerSet.cthickening
{α : Type u_1}
[NormedOrderedAddGroup α]
{s : Set α}
(hs : IsLowerSet s)
(ε : ℝ)
:
IsLowerSet (Metric.cthickening ε s)
theorem
IsLowerSet.cthickening'
{α : Type u_1}
[NormedOrderedGroup α]
{s : Set α}
(hs : IsLowerSet s)
(ε : ℝ)
:
IsLowerSet (Metric.cthickening ε s)
ℝⁿ
#
theorem
IsUpperSet.exists_subset_ball
{ι : Type u_2}
[Fintype ι]
{s : Set (ι → ℝ)}
{x : ι → ℝ}
{δ : ℝ}
(hs : IsUpperSet s)
(hx : x ∈ closure s)
(hδ : 0 < δ)
:
∃ (y : ι → ℝ), Metric.closedBall y (δ / 4) ⊆ Metric.closedBall x δ ∧ Metric.closedBall y (δ / 4) ⊆ interior s
theorem
IsLowerSet.exists_subset_ball
{ι : Type u_2}
[Fintype ι]
{s : Set (ι → ℝ)}
{x : ι → ℝ}
{δ : ℝ}
(hs : IsLowerSet s)
(hx : x ∈ closure s)
(hδ : 0 < δ)
:
∃ (y : ι → ℝ), Metric.closedBall y (δ / 4) ⊆ Metric.closedBall x δ ∧ Metric.closedBall y (δ / 4) ⊆ interior s