Seminorms and norms on rings #
This file defines seminorms and norms on rings. These definitions are useful when one needs to consider multiple (semi)norms on a given ring.
Main declarations #
For a ring R
:
RingSeminorm
: A seminorm on a ringR
is a functionf : R → ℝ
that preserves zero, takes nonnegative values, is subadditive and submultiplicative and such thatf (-x) = f x
for allx ∈ R
.RingNorm
: A seminormf
is a norm iff x = 0
if and only ifx = 0
.MulRingSeminorm
: A multiplicative seminorm on a ringR
is a ring seminorm that preserves multiplication.MulRingNorm
: A multiplicative norm on a ringR
is a ring norm that preserves multiplication.
Notes #
The corresponding hom classes are defined in Mathlib.Analysis.Order.Hom.Basic
to be used by
absolute values.
References #
- [S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis][bosch-guntzer-remmert]
Tags #
ring_seminorm, ring_norm
A seminorm on a ring R
is a function f : R → ℝ
that preserves zero, takes nonnegative
values, is subadditive and submultiplicative and such that f (-x) = f x
for all x ∈ R
.
- toFun : R → ℝ
- map_zero' : self.toAddGroupSeminorm.toFun 0 = 0
- mul_le' : ∀ (x y : R), self.toAddGroupSeminorm.toFun (x * y) ≤ self.toAddGroupSeminorm.toFun x * self.toAddGroupSeminorm.toFun y
The property of a
RingSeminorm
that for allx
andy
in the ring, the norm ofx * y
is less than the norm ofx
times the norm ofy
.
Instances For
A multiplicative seminorm on a ring R
is a function f : R → ℝ
that preserves zero and
multiplication, takes nonnegative values, is subadditive and such that f (-x) = f x
for all x
.
- toFun : R → ℝ
- map_zero' : self.toAddGroupSeminorm.toFun 0 = 0
- map_one' : self.toAddGroupSeminorm.toFun 1 = 1
The proposition that the function preserves 1
- map_mul' : ∀ (x y : R), self.toAddGroupSeminorm.toFun (x * y) = self.toAddGroupSeminorm.toFun x * self.toAddGroupSeminorm.toFun y
The proposition that the function preserves multiplication
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : RingSeminormClass (RingSeminorm R) R ℝ) = (_ : RingSeminormClass (RingSeminorm R) R ℝ)
Equations
- RingSeminorm.instInhabitedRingSeminormToNonUnitalNonAssocRing = { default := 0 }
The trivial seminorm on a ring R
is the RingSeminorm
taking value 0
at 0
and 1
at
every other element.
Equations
- One or more equations did not get rendered due to their size.
The norm of a NonUnitalSeminormedRing
as a RingSeminorm
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : RingNormClass (RingNorm R) R ℝ) = (_ : RingNormClass (RingNorm R) R ℝ)
The trivial norm on a ring R
is the RingNorm
taking value 0
at 0
and 1
at every
other element.
Equations
- One or more equations did not get rendered due to their size.
Equations
- RingNorm.instInhabitedRingNormToNonUnitalNonAssocRing R = { default := 1 }
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : MulRingSeminormClass (MulRingSeminorm R) R ℝ) = (_ : MulRingSeminormClass (MulRingSeminorm R) R ℝ)
The trivial seminorm on a ring R
is the MulRingSeminorm
taking value 0
at 0
and 1
at
every other element.
Equations
- One or more equations did not get rendered due to their size.
Equations
- MulRingSeminorm.instInhabitedMulRingSeminorm = { default := 1 }
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : MulRingNormClass (MulRingNorm R) R ℝ) = (_ : MulRingNormClass (MulRingNorm R) R ℝ)
The trivial norm on a ring R
is the MulRingNorm
taking value 0
at 0
and 1
at every
other element.
Equations
- One or more equations did not get rendered due to their size.
Equations
- MulRingNorm.instInhabitedMulRingNorm R = { default := 1 }
A nonzero ring seminorm on a field K
is a ring norm.
Equations
- RingSeminorm.toRingNorm f hnt = { toRingSeminorm := f, eq_zero_of_map_eq_zero' := (_ : ∀ (x : K), f.toAddGroupSeminorm.toFun x = 0 → x = 0) }
Instances For
The norm of a NonUnitalNormedRing
as a RingNorm
.
Equations
- One or more equations did not get rendered due to their size.