Multiplicative actions of/on balls and spheres #
Let E
be a normed vector space over a normed field š
. In this file we define the following
multiplicative actions.
- The closed unit ball in
š
acts on open balls and closed balls centered at0
inE
. - The unit sphere in
š
acts on open balls, closed balls, and spheres centered at0
inE
.
instance
mulActionClosedBallBall
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
MulAction ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)
Equations
- mulActionClosedBallBall = MulAction.mk (_ : ā (x : ā(Metric.ball 0 r)), 1 ā¢ x = x) (_ : ā (cā cā : ā(Metric.closedBall 0 1)) (x : ā(Metric.ball 0 r)), (cā * cā) ā¢ x = cā ā¢ cā ā¢ x)
instance
continuousSMul_closedBall_ball
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
ContinuousSMul ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)
Equations
- (_ : ContinuousSMul ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)) = (_ : ContinuousSMul ā(Metric.closedBall 0 1) ā(Metric.ball 0 r))
instance
mulActionClosedBallClosedBall
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
MulAction ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)
Equations
- One or more equations did not get rendered due to their size.
instance
continuousSMul_closedBall_closedBall
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
ContinuousSMul ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : ContinuousSMul ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)) = (_ : ContinuousSMul ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r))
instance
mulActionSphereBall
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
MulAction ā(Metric.sphere 0 1) ā(Metric.ball 0 r)
Equations
- mulActionSphereBall = MulAction.mk (_ : ā (x : ā(Metric.ball 0 r)), 1 ā¢ x = x) (_ : ā (x x_1 : ā(Metric.sphere 0 1)) (x_2 : ā(Metric.ball 0 r)), (x * x_1) ā¢ x_2 = x ā¢ x_1 ā¢ x_2)
instance
continuousSMul_sphere_ball
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.ball 0 r)
Equations
- (_ : ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.ball 0 r)) = (_ : ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.ball 0 r))
instance
mulActionSphereClosedBall
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
MulAction ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r)
Equations
- One or more equations did not get rendered due to their size.
instance
continuousSMul_sphere_closedBall
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r)) = (_ : ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r))
instance
mulActionSphereSphere
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
MulAction ā(Metric.sphere 0 1) ā(Metric.sphere 0 r)
Equations
- mulActionSphereSphere = MulAction.mk (_ : ā (x : ā(Metric.sphere 0 r)), 1 ā¢ x = x) (_ : ā (cā cā : ā(Metric.sphere 0 1)) (x : ā(Metric.sphere 0 r)), (cā * cā) ā¢ x = cā ā¢ cā ā¢ x)
instance
continuousSMul_sphere_sphere
{š : Type u_1}
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
{r : ā}
:
ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.sphere 0 r)
Equations
- (_ : ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.sphere 0 r)) = (_ : ContinuousSMul ā(Metric.sphere 0 1) ā(Metric.sphere 0 r))
instance
isScalarTower_closedBall_closedBall_closedBall
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[NormedAlgebra š š']
[IsScalarTower š š' E]
:
IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)) = (_ : IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r))
instance
isScalarTower_closedBall_closedBall_ball
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[NormedAlgebra š š']
[IsScalarTower š š' E]
:
IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)
Equations
- (_ : IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)) = (_ : IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r))
instance
isScalarTower_sphere_closedBall_closedBall
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[NormedAlgebra š š']
[IsScalarTower š š' E]
:
IsScalarTower ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)) = (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r))
instance
isScalarTower_sphere_closedBall_ball
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[NormedAlgebra š š']
[IsScalarTower š š' E]
:
IsScalarTower ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)
Equations
- (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)) = (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r))
instance
isScalarTower_sphere_sphere_closedBall
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[NormedAlgebra š š']
[IsScalarTower š š' E]
:
IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r)) = (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r))
instance
isScalarTower_sphere_sphere_ball
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[NormedAlgebra š š']
[IsScalarTower š š' E]
:
IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.ball 0 r)
Equations
- (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.ball 0 r)) = (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.ball 0 r))
instance
isScalarTower_sphere_sphere_sphere
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[NormedAlgebra š š']
[IsScalarTower š š' E]
:
IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.sphere 0 r)
Equations
- (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.sphere 0 r)) = (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.sphere 0 r))
instance
isScalarTower_sphere_ball_ball
{š : Type u_1}
{š' : Type u_2}
[NormedField š]
[NormedField š']
[NormedAlgebra š š']
:
IsScalarTower ā(Metric.sphere 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1)
Equations
- (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1)) = (_ : IsScalarTower ā(Metric.sphere 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1))
instance
isScalarTower_closedBall_ball_ball
{š : Type u_1}
{š' : Type u_2}
[NormedField š]
[NormedField š']
[NormedAlgebra š š']
:
IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1)
Equations
- (_ : IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1)) = (_ : IsScalarTower ā(Metric.closedBall 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1))
instance
instSMulCommClass_closedBall_closedBall_closedBall
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[SMulCommClass š š' E]
:
SMulCommClass ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : SMulCommClass ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)) = (_ : SMulCommClass ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r))
instance
instSMulCommClass_closedBall_closedBall_ball
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[SMulCommClass š š' E]
:
SMulCommClass ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)
Equations
- (_ : SMulCommClass ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)) = (_ : SMulCommClass ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r))
instance
instSMulCommClass_sphere_closedBall_closedBall
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[SMulCommClass š š' E]
:
SMulCommClass ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r)) = (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.closedBall 0 r))
instance
instSMulCommClass_sphere_closedBall_ball
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[SMulCommClass š š' E]
:
SMulCommClass ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)
Equations
- (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r)) = (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.closedBall 0 1) ā(Metric.ball 0 r))
instance
instSMulCommClass_sphere_ball_ball
{š : Type u_1}
{š' : Type u_2}
[NormedField š]
[NormedField š']
[NormedAlgebra š š']
:
SMulCommClass ā(Metric.sphere 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1)
Equations
- (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1)) = (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.ball 0 1) ā(Metric.ball 0 1))
instance
instSMulCommClass_sphere_sphere_closedBall
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[SMulCommClass š š' E]
:
SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r)
Equations
- (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r)) = (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.closedBall 0 r))
instance
instSMulCommClass_sphere_sphere_ball
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[SMulCommClass š š' E]
:
SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.ball 0 r)
Equations
- (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.ball 0 r)) = (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.ball 0 r))
instance
instSMulCommClass_sphere_sphere_sphere
{š : Type u_1}
{š' : Type u_2}
{E : Type u_3}
[NormedField š]
[NormedField š']
[SeminormedAddCommGroup E]
[NormedSpace š E]
[NormedSpace š' E]
{r : ā}
[SMulCommClass š š' E]
:
SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.sphere 0 r)
Equations
- (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.sphere 0 r)) = (_ : SMulCommClass ā(Metric.sphere 0 1) ā(Metric.sphere 0 1) ā(Metric.sphere 0 r))
theorem
ne_neg_of_mem_sphere
(š : Type u_1)
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
[CharZero š]
{r : ā}
(hr : r ā 0)
(x : ā(Metric.sphere 0 r))
:
theorem
ne_neg_of_mem_unit_sphere
(š : Type u_1)
{E : Type u_3}
[NormedField š]
[SeminormedAddCommGroup E]
[NormedSpace š E]
[CharZero š]
(x : ā(Metric.sphere 0 1))
: