Documentation

Mathlib.Analysis.NormedSpace.TrivSqZeroExt

Results on TrivSqZeroExt R M related to the norm #

This file contains results about NormedSpace.exp for TrivSqZeroExt.

It also contains a definition of the $โ„“^1$ norm, which defines $|r + m| \coloneqq |r| + |m|$. This is not a particularly canonical choice of definition, but it is sufficient to provide a NormedAlgebra instance, and thus enables NormedSpace.exp_add_of_commute to be used on TrivSqZeroExt. If the non-canonicity becomes problematic in future, we could keep the collection of instances behind an open scoped.

Main results #

TODO #

@[simp]
theorem TrivSqZeroExt.fst_expSeries (๐•œ : Type u_1) {R : Type u_3} {M : Type u_4} [Field ๐•œ] [Ring R] [AddCommGroup M] [Algebra ๐•œ R] [Module ๐•œ M] [Module R M] [Module Rแตแต’แต– M] [SMulCommClass R Rแตแต’แต– M] [IsScalarTower ๐•œ R M] [IsScalarTower ๐•œ Rแตแต’แต– M] [TopologicalSpace R] [TopologicalSpace M] [TopologicalRing R] [TopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rแตแต’แต– M] (x : TrivSqZeroExt R M) (n : โ„•) :
TrivSqZeroExt.fst ((NormedSpace.expSeries ๐•œ (TrivSqZeroExt R M) n) fun (x_1 : Fin n) => x) = (NormedSpace.expSeries ๐•œ R n) fun (x_1 : Fin n) => TrivSqZeroExt.fst x

If exp R x.fst converges to e then (exp R x).snd converges to e โ€ข x.snd.

If exp R x.fst converges to e then exp R x converges to inl e + inr (e โ€ข x.snd).

@[simp]
theorem TrivSqZeroExt.fst_exp (๐•œ : Type u_1) {R : Type u_3} {M : Type u_4} [Field ๐•œ] [CharZero ๐•œ] [CommRing R] [AddCommGroup M] [Algebra ๐•œ R] [Module ๐•œ M] [Module R M] [Module Rแตแต’แต– M] [IsCentralScalar R M] [IsScalarTower ๐•œ R M] [TopologicalSpace R] [TopologicalSpace M] [TopologicalRing R] [TopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rแตแต’แต– M] [T2Space R] [T2Space M] (x : TrivSqZeroExt R M) :

The $โ„“^1$ norm on the trivial square zero extension #

Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
instance TrivSqZeroExt.instL1NormedSpace (๐•œ : Type u_1) {R : Type u_3} {M : Type u_4} [NormedField ๐•œ] [NormedRing R] [NormedAddCommGroup M] [NormedAlgebra ๐•œ R] [NormedSpace ๐•œ M] :
NormedSpace ๐•œ (TrivSqZeroExt R M)
Equations