Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Arctan

The arctan function. #

Inequalities, derivatives, and Real.tan as a PartialHomeomorph between (-(π / 2), π / 2) and the whole line.

theorem Real.tan_add {x : } {y : } (h : ((∀ (k : ), x (2 * k + 1) * Real.pi / 2) ∀ (l : ), y (2 * l + 1) * Real.pi / 2) (∃ (k : ), x = (2 * k + 1) * Real.pi / 2) ∃ (l : ), y = (2 * l + 1) * Real.pi / 2) :
theorem Real.tan_add' {x : } {y : } (h : (∀ (k : ), x (2 * k + 1) * Real.pi / 2) ∀ (l : ), y (2 * l + 1) * Real.pi / 2) :
theorem Real.tan_two_mul {x : } :
Real.tan (2 * x) = 2 * Real.tan x / (1 - Real.tan x ^ 2)
theorem Real.continuous_tan :
Continuous fun (x : {x : | Real.cos x 0}) => Real.tan x

Real.tan as an OrderIso between (-(π / 2), π / 2) and .

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def Real.arctan (x : ) :

    Inverse of the tan function, returns values in the range -π / 2 < arctan x and arctan x < π / 2

    Equations
    Instances For
      @[simp]
      theorem Real.arctan_tan {x : } (hx₁ : -(Real.pi / 2) < x) (hx₂ : x < Real.pi / 2) :
      theorem Real.cos_sq_arctan (x : ) :
      Real.cos (Real.arctan x) ^ 2 = 1 / (1 + x ^ 2)
      theorem Real.arcsin_eq_arctan {x : } (h : x Set.Ioo (-1) 1) :
      @[simp]
      theorem Real.arctan_eq_of_tan_eq {x : } {y : } (h : Real.tan x = y) (hx : x Set.Ioo (-(Real.pi / 2)) (Real.pi / 2)) :
      @[simp]
      theorem Real.arccos_eq_arctan {x : } (h : 0 < x) :

      Real.tan as a PartialHomeomorph between (-(π / 2), π / 2) and the whole line.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For