Multiple angle formulas in terms of Chebyshev polynomials #
This file gives the trigonometric characterizations of Chebyshev polynomials, for both the real
(Real.cos
) and complex (Complex.cos
) cosine.
@[simp]
theorem
Polynomial.Chebyshev.aeval_T
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(x : A)
(n : ℕ)
:
(Polynomial.aeval x) (Polynomial.Chebyshev.T R n) = Polynomial.eval x (Polynomial.Chebyshev.T A n)
@[simp]
theorem
Polynomial.Chebyshev.aeval_U
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(x : A)
(n : ℕ)
:
(Polynomial.aeval x) (Polynomial.Chebyshev.U R n) = Polynomial.eval x (Polynomial.Chebyshev.U A n)
@[simp]
theorem
Polynomial.Chebyshev.algebraMap_eval_T
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(x : R)
(n : ℕ)
:
(algebraMap R A) (Polynomial.eval x (Polynomial.Chebyshev.T R n)) = Polynomial.eval ((algebraMap R A) x) (Polynomial.Chebyshev.T A n)
@[simp]
theorem
Polynomial.Chebyshev.algebraMap_eval_U
{R : Type u_1}
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(x : R)
(n : ℕ)
:
(algebraMap R A) (Polynomial.eval x (Polynomial.Chebyshev.U R n)) = Polynomial.eval ((algebraMap R A) x) (Polynomial.Chebyshev.U A n)
@[simp]
theorem
Polynomial.Chebyshev.complex_ofReal_eval_T
(x : ℝ)
(n : ℕ)
:
↑(Polynomial.eval x (Polynomial.Chebyshev.T ℝ n)) = Polynomial.eval (↑x) (Polynomial.Chebyshev.T ℂ n)
@[simp]
theorem
Polynomial.Chebyshev.complex_ofReal_eval_U
(x : ℝ)
(n : ℕ)
:
↑(Polynomial.eval x (Polynomial.Chebyshev.U ℝ n)) = Polynomial.eval (↑x) (Polynomial.Chebyshev.U ℂ n)
Complex versions #
@[simp]
theorem
Polynomial.Chebyshev.T_complex_cos
(θ : ℂ)
(n : ℕ)
:
Polynomial.eval (Complex.cos θ) (Polynomial.Chebyshev.T ℂ n) = Complex.cos (↑n * θ)
The n
-th Chebyshev polynomial of the first kind evaluates on cos θ
to the
value cos (n * θ)
.
@[simp]
theorem
Polynomial.Chebyshev.U_complex_cos
(θ : ℂ)
(n : ℕ)
:
Polynomial.eval (Complex.cos θ) (Polynomial.Chebyshev.U ℂ n) * Complex.sin θ = Complex.sin ((↑n + 1) * θ)
The n
-th Chebyshev polynomial of the second kind evaluates on cos θ
to the
value sin ((n + 1) * θ) / sin θ
.
Real versions #
@[simp]
theorem
Polynomial.Chebyshev.T_real_cos
(θ : ℝ)
(n : ℕ)
:
Polynomial.eval (Real.cos θ) (Polynomial.Chebyshev.T ℝ n) = Real.cos (↑n * θ)
The n
-th Chebyshev polynomial of the first kind evaluates on cos θ
to the
value cos (n * θ)
.
@[simp]
theorem
Polynomial.Chebyshev.U_real_cos
(θ : ℝ)
(n : ℕ)
:
Polynomial.eval (Real.cos θ) (Polynomial.Chebyshev.U ℝ n) * Real.sin θ = Real.sin ((↑n + 1) * θ)
The n
-th Chebyshev polynomial of the second kind evaluates on cos θ
to the
value sin ((n + 1) * θ) / sin θ
.