derivatives of the inverse trigonometric functions #
Derivatives of arcsin
and arccos
.
theorem
Real.deriv_arcsin_aux
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
:
HasStrictDerivAt Real.arcsin (1 / Real.sqrt (1 - x ^ 2)) x ∧ ContDiffAt ℝ ⊤ Real.arcsin x
theorem
Real.hasStrictDerivAt_arcsin
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
:
HasStrictDerivAt Real.arcsin (1 / Real.sqrt (1 - x ^ 2)) x
theorem
Real.hasDerivAt_arcsin
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
:
HasDerivAt Real.arcsin (1 / Real.sqrt (1 - x ^ 2)) x
theorem
Real.contDiffAt_arcsin
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
{n : ℕ∞}
:
ContDiffAt ℝ n Real.arcsin x
theorem
Real.hasDerivWithinAt_arcsin_Ici
{x : ℝ}
(h : x ≠ -1)
:
HasDerivWithinAt Real.arcsin (1 / Real.sqrt (1 - x ^ 2)) (Set.Ici x) x
theorem
Real.hasDerivWithinAt_arcsin_Iic
{x : ℝ}
(h : x ≠ 1)
:
HasDerivWithinAt Real.arcsin (1 / Real.sqrt (1 - x ^ 2)) (Set.Iic x) x
theorem
Real.differentiableWithinAt_arcsin_Ici
{x : ℝ}
:
DifferentiableWithinAt ℝ Real.arcsin (Set.Ici x) x ↔ x ≠ -1
theorem
Real.differentiableWithinAt_arcsin_Iic
{x : ℝ}
:
DifferentiableWithinAt ℝ Real.arcsin (Set.Iic x) x ↔ x ≠ 1
@[simp]
theorem
Real.contDiffAt_arcsin_iff
{x : ℝ}
{n : ℕ∞}
:
ContDiffAt ℝ n Real.arcsin x ↔ n = 0 ∨ x ≠ -1 ∧ x ≠ 1
theorem
Real.hasStrictDerivAt_arccos
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
:
HasStrictDerivAt Real.arccos (-(1 / Real.sqrt (1 - x ^ 2))) x
theorem
Real.hasDerivAt_arccos
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
:
HasDerivAt Real.arccos (-(1 / Real.sqrt (1 - x ^ 2))) x
theorem
Real.contDiffAt_arccos
{x : ℝ}
(h₁ : x ≠ -1)
(h₂ : x ≠ 1)
{n : ℕ∞}
:
ContDiffAt ℝ n Real.arccos x
theorem
Real.hasDerivWithinAt_arccos_Ici
{x : ℝ}
(h : x ≠ -1)
:
HasDerivWithinAt Real.arccos (-(1 / Real.sqrt (1 - x ^ 2))) (Set.Ici x) x
theorem
Real.hasDerivWithinAt_arccos_Iic
{x : ℝ}
(h : x ≠ 1)
:
HasDerivWithinAt Real.arccos (-(1 / Real.sqrt (1 - x ^ 2))) (Set.Iic x) x
theorem
Real.differentiableWithinAt_arccos_Ici
{x : ℝ}
:
DifferentiableWithinAt ℝ Real.arccos (Set.Ici x) x ↔ x ≠ -1
theorem
Real.differentiableWithinAt_arccos_Iic
{x : ℝ}
:
DifferentiableWithinAt ℝ Real.arccos (Set.Iic x) x ↔ x ≠ 1
theorem
Real.contDiffAt_arccos_iff
{x : ℝ}
{n : ℕ∞}
:
ContDiffAt ℝ n Real.arccos x ↔ n = 0 ∨ x ≠ -1 ∧ x ≠ 1