Trigonometric functions as sums of infinite series #
In this file we express trigonometric functions in terms of their series expansion.
Main results #
Complex.hasSum_cos
,Complex.cos_eq_tsum
:Complex.cos
as the sum of an infinite series.Real.hasSum_cos
,Real.cos_eq_tsum
:Real.cos
as the sum of an infinite series.Complex.hasSum_sin
,Complex.sin_eq_tsum
:Complex.sin
as the sum of an infinite series.Real.hasSum_sin
,Real.sin_eq_tsum
:Real.sin
as the sum of an infinite series.
cos
and sin
for ℝ
and ℂ
#
theorem
Complex.hasSum_cos'
(z : ℂ)
:
HasSum (fun (n : ℕ) => (z * Complex.I) ^ (2 * n) / ↑(Nat.factorial (2 * n))) (Complex.cos z)
theorem
Complex.hasSum_cos
(z : ℂ)
:
HasSum (fun (n : ℕ) => (-1) ^ n * z ^ (2 * n) / ↑(Nat.factorial (2 * n))) (Complex.cos z)
The power series expansion of Complex.cos
.
The power series expansion of Complex.sin
.
theorem
Complex.cos_eq_tsum'
(z : ℂ)
:
Complex.cos z = ∑' (n : ℕ), (z * Complex.I) ^ (2 * n) / ↑(Nat.factorial (2 * n))
theorem
Complex.cos_eq_tsum
(z : ℂ)
:
Complex.cos z = ∑' (n : ℕ), (-1) ^ n * z ^ (2 * n) / ↑(Nat.factorial (2 * n))
cosh
and sinh
for ℝ
and ℂ
#
theorem
Complex.hasSum_cosh
(z : ℂ)
:
HasSum (fun (n : ℕ) => z ^ (2 * n) / ↑(Nat.factorial (2 * n))) (Complex.cosh z)
The power series expansion of Complex.cosh
.
theorem
Complex.hasSum_sinh
(z : ℂ)
:
HasSum (fun (n : ℕ) => z ^ (2 * n + 1) / ↑(Nat.factorial (2 * n + 1))) (Complex.sinh z)
The power series expansion of Complex.sinh
.
theorem
Complex.cosh_eq_tsum
(z : ℂ)
:
Complex.cosh z = ∑' (n : ℕ), z ^ (2 * n) / ↑(Nat.factorial (2 * n))
theorem
Complex.sinh_eq_tsum
(z : ℂ)
:
Complex.sinh z = ∑' (n : ℕ), z ^ (2 * n + 1) / ↑(Nat.factorial (2 * n + 1))