Documentation

Mathlib.CategoryTheory.Adjunction.Evaluation

Adjunctions involving evaluation #

We show that evaluation of functors have adjoints, given the existence of (co)products.

@[simp]
theorem CategoryTheory.evaluationLeftAdjoint_obj_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] [∀ (a b : C), CategoryTheory.Limits.HasCoproductsOfShape (a b) D] (c : C) (d : D) :
∀ {X Y : C} (f : X Y), ((CategoryTheory.evaluationLeftAdjoint D c).toPrefunctor.obj d).toPrefunctor.map f = CategoryTheory.Limits.Sigma.desc fun (g : c X) => CategoryTheory.Limits.Sigma.ι (fun (x : c Y) => d) (CategoryTheory.CategoryStruct.comp g f)
@[simp]
theorem CategoryTheory.evaluationLeftAdjoint_obj_obj {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] [∀ (a b : C), CategoryTheory.Limits.HasCoproductsOfShape (a b) D] (c : C) (d : D) (t : C) :
((CategoryTheory.evaluationLeftAdjoint D c).toPrefunctor.obj d).toPrefunctor.obj t = fun (x : c t) => d
@[simp]

The left adjoint of evaluation.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The adjunction showing that evaluation is a right adjoint.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.evaluationRightAdjoint_obj_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] [∀ (a b : C), CategoryTheory.Limits.HasProductsOfShape (a b) D] (c : C) (d : D) :
      ∀ {X Y : C} (f : X Y), ((CategoryTheory.evaluationRightAdjoint D c).toPrefunctor.obj d).toPrefunctor.map f = CategoryTheory.Limits.Pi.lift fun (g : Y c) => CategoryTheory.Limits.Pi.π (fun (x : X c) => d) (CategoryTheory.CategoryStruct.comp f g)
      @[simp]
      theorem CategoryTheory.evaluationRightAdjoint_obj_obj {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (D : Type u₂) [CategoryTheory.Category.{v₂, u₂} D] [∀ (a b : C), CategoryTheory.Limits.HasProductsOfShape (a b) D] (c : C) (d : D) (t : C) :
      ((CategoryTheory.evaluationRightAdjoint D c).toPrefunctor.obj d).toPrefunctor.obj t = fun (x : t c) => d

      The right adjoint of evaluation.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        The adjunction showing that evaluation is a left adjoint.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For