Adjunctions related to the over category #
Construct the left adjoint star X
to Over.forget X : Over X ⥤ C
.
TODO #
Show star X
itself has a left adjoint provided C
is locally cartesian closed.
@[simp]
theorem
CategoryTheory.star_obj_left
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(X : C)
[CategoryTheory.Limits.HasBinaryProducts C]
(X : C)
:
((CategoryTheory.star X✝).toPrefunctor.obj X).left = (X✝ ⨯ X)
@[simp]
theorem
CategoryTheory.star_map_left
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(X : C)
[CategoryTheory.Limits.HasBinaryProducts C]
:
∀ {X_1 Y : C} (f : X_1 ⟶ Y),
((CategoryTheory.star X).toPrefunctor.map f).left = CategoryTheory.Limits.prod.map (CategoryTheory.CategoryStruct.id X) f
@[simp]
theorem
CategoryTheory.star_obj_hom
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(X : C)
[CategoryTheory.Limits.HasBinaryProducts C]
(X : C)
:
((CategoryTheory.star X✝).toPrefunctor.obj X).hom = CategoryTheory.Limits.prod.fst
def
CategoryTheory.star
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(X : C)
[CategoryTheory.Limits.HasBinaryProducts C]
:
The functor from C
to Over X
which sends Y : C
to π₁ : X ⨯ Y ⟶ X
, sometimes denoted X*
.
Equations
Instances For
def
CategoryTheory.forgetAdjStar
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(X : C)
[CategoryTheory.Limits.HasBinaryProducts C]
:
The functor Over.forget X : Over X ⥤ C
has a right adjoint given by star X
.
Note that the binary products assumption is necessary: the existence of a right adjoint to
Over.forget X
is equivalent to the existence of each binary product X ⨯ -
.
Equations
Instances For
instance
CategoryTheory.instIsLeftAdjointOverInstCategoryOverForget
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(X : C)
[CategoryTheory.Limits.HasBinaryProducts C]
:
Note that the binary products assumption is necessary: the existence of a right adjoint to
Over.forget X
is equivalent to the existence of each binary product X ⨯ -
.
Equations
- CategoryTheory.instIsLeftAdjointOverInstCategoryOverForget X = { right := CategoryTheory.star X, adj := CategoryTheory.forgetAdjStar X }