The bicategory of oplax functors between two bicategories #
Given bicategories B
and C
, we give a bicategory structure on OplaxFunctor B C
whose
- objects are oplax functors,
- 1-morphisms are oplax natural transformations, and
- 2-morphisms are modifications.
@[simp]
theorem
CategoryTheory.OplaxNatTrans.whiskerLeft_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
{θ : G ⟶ H}
{ι : G ⟶ H}
(Γ : θ ⟶ ι)
(a : B)
:
(CategoryTheory.OplaxNatTrans.whiskerLeft η Γ).app a = CategoryTheory.Bicategory.whiskerLeft (η.app a) (Γ.app a)
def
CategoryTheory.OplaxNatTrans.whiskerLeft
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
{θ : G ⟶ H}
{ι : G ⟶ H}
(Γ : θ ⟶ ι)
:
Left whiskering of an oplax natural transformation and a modification.
Equations
- CategoryTheory.OplaxNatTrans.whiskerLeft η Γ = CategoryTheory.OplaxNatTrans.Modification.mk fun (a : B) => CategoryTheory.Bicategory.whiskerLeft (η.app a) (Γ.app a)
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.whiskerRight_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
{η : F ⟶ G}
{θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H)
(a : B)
:
(CategoryTheory.OplaxNatTrans.whiskerRight Γ ι).app a = CategoryTheory.Bicategory.whiskerRight (Γ.app a) (ι.app a)
def
CategoryTheory.OplaxNatTrans.whiskerRight
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
{η : F ⟶ G}
{θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H)
:
Right whiskering of an oplax natural transformation and a modification.
Equations
- CategoryTheory.OplaxNatTrans.whiskerRight Γ ι = CategoryTheory.OplaxNatTrans.Modification.mk fun (a : B) => CategoryTheory.Bicategory.whiskerRight (Γ.app a) (ι.app a)
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.associator_inv_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
{I : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
(CategoryTheory.OplaxNatTrans.associator η θ ι).inv.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxNatTrans.associator_hom_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
{I : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
(CategoryTheory.OplaxNatTrans.associator η θ ι).hom.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
def
CategoryTheory.OplaxNatTrans.associator
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
{I : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
:
Associator for the vertical composition of oplax natural transformations.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.leftUnitor_inv_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.OplaxNatTrans.leftUnitor η).inv.app a = (CategoryTheory.Bicategory.leftUnitor (η.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxNatTrans.leftUnitor_hom_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.OplaxNatTrans.leftUnitor η).hom.app a = (CategoryTheory.Bicategory.leftUnitor (η.app a)).hom
def
CategoryTheory.OplaxNatTrans.leftUnitor
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
:
Left unitor for the vertical composition of oplax natural transformations.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.OplaxNatTrans.rightUnitor_hom_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.OplaxNatTrans.rightUnitor η).hom.app a = (CategoryTheory.Bicategory.rightUnitor (η.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxNatTrans.rightUnitor_inv_app
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.OplaxNatTrans.rightUnitor η).inv.app a = (CategoryTheory.Bicategory.rightUnitor (η.app a)).inv
def
CategoryTheory.OplaxNatTrans.rightUnitor
{B : Type u₁}
[CategoryTheory.Bicategory B]
{C : Type u₂}
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
:
Right unitor for the vertical composition of oplax natural transformations.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_whiskerRight_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
:
∀ (x x_1 : F ⟶ G) (Γ : x ⟶ x_1) (η : G ⟶ H) (a : B),
(CategoryTheory.Bicategory.whiskerRight Γ η).app a = CategoryTheory.Bicategory.whiskerRight (Γ.app a) (η.app a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_associator_hom_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
(I : CategoryTheory.OplaxFunctor B C)
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
(CategoryTheory.Bicategory.associator η θ ι).hom.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_rightUnitor_hom_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.Bicategory.rightUnitor η).hom.app a = (CategoryTheory.Bicategory.rightUnitor (η.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_rightUnitor_inv_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.Bicategory.rightUnitor η).inv.app a = (CategoryTheory.Bicategory.rightUnitor (η.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_id_naturality
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
(F : CategoryTheory.OplaxFunctor B C)
{a : B}
{b : B}
(f : a ⟶ b)
:
(CategoryTheory.CategoryStruct.id F).naturality f = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.rightUnitor ((↑F.toPrelaxFunctor).map f)).hom
(CategoryTheory.Bicategory.leftUnitor ((↑F.toPrelaxFunctor).map f)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_homCategory_comp_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
(a : CategoryTheory.OplaxFunctor B C)
(b : CategoryTheory.OplaxFunctor B C)
:
∀ {X Y Z : a ⟶ b} (Γ : CategoryTheory.OplaxNatTrans.Modification X Y)
(Δ : CategoryTheory.OplaxNatTrans.Modification Y Z) (a_1 : B),
(CategoryTheory.CategoryStruct.comp Γ Δ).app a_1 = CategoryTheory.CategoryStruct.comp (Γ.app a_1) (Δ.app a_1)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_id_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
(F : CategoryTheory.OplaxFunctor B C)
(a : B)
:
(CategoryTheory.CategoryStruct.id F).app a = CategoryTheory.CategoryStruct.id ((↑F.toPrelaxFunctor).obj a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_leftUnitor_hom_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.Bicategory.leftUnitor η).hom.app a = (CategoryTheory.Bicategory.leftUnitor (η.app a)).hom
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_whiskerLeft_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
:
∀ (x x_1 : G ⟶ H) (Γ : x ⟶ x_1) (a : B),
(CategoryTheory.Bicategory.whiskerLeft η Γ).app a = CategoryTheory.Bicategory.whiskerLeft (η.app a) (Γ.app a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_associator_inv_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
{H : CategoryTheory.OplaxFunctor B C}
(I : CategoryTheory.OplaxFunctor B C)
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
(CategoryTheory.Bicategory.associator η θ ι).inv.app a = (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_homCategory_id_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
(a : CategoryTheory.OplaxFunctor B C)
(b : CategoryTheory.OplaxFunctor B C)
(η : a✝ ⟶ b)
(a : B)
:
(CategoryTheory.CategoryStruct.id η).app a = CategoryTheory.CategoryStruct.id (η.app a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_comp_naturality
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
:
∀ {X Y Z : CategoryTheory.OplaxFunctor B C} (η : CategoryTheory.OplaxNatTrans X Y)
(θ : CategoryTheory.OplaxNatTrans Y Z) {a b : B} (f : a ⟶ b),
(CategoryTheory.CategoryStruct.comp η θ).naturality f = CategoryTheory.CategoryStruct.comp
(CategoryTheory.Bicategory.associator ((↑X.toPrelaxFunctor).map f) (η.app b) (θ.app b)).inv
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (η.naturality f) (θ.app b))
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Bicategory.associator (η.app a) ((↑Y.toPrelaxFunctor).map f) (θ.app b)).hom
(CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (η.app a) (θ.naturality f))
(CategoryTheory.Bicategory.associator (η.app a) (θ.app a) ((↑Z.toPrelaxFunctor).map f)).inv)))
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_leftUnitor_inv_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
{F : CategoryTheory.OplaxFunctor B C}
{G : CategoryTheory.OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
(CategoryTheory.Bicategory.leftUnitor η).inv.app a = (CategoryTheory.Bicategory.leftUnitor (η.app a)).inv
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_comp_app
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
:
∀ {X Y Z : CategoryTheory.OplaxFunctor B C} (η : CategoryTheory.OplaxNatTrans X Y)
(θ : CategoryTheory.OplaxNatTrans Y Z) (a : B),
(CategoryTheory.CategoryStruct.comp η θ).app a = CategoryTheory.CategoryStruct.comp (η.app a) (θ.app a)
@[simp]
theorem
CategoryTheory.OplaxFunctor.bicategory_Hom
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
(F : CategoryTheory.OplaxFunctor B C)
(G : CategoryTheory.OplaxFunctor B C)
:
(F ⟶ G) = CategoryTheory.OplaxNatTrans F G
instance
CategoryTheory.OplaxFunctor.bicategory
(B : Type u₁)
[CategoryTheory.Bicategory B]
(C : Type u₂)
[CategoryTheory.Bicategory C]
:
A bicategory structure on the oplax functors between bicategories.
Equations
- One or more equations did not get rendered due to their size.