Documentation

Mathlib.CategoryTheory.Bicategory.FunctorBicategory

The bicategory of oplax functors between two bicategories #

Given bicategories B and C, we give a bicategory structure on OplaxFunctor B C whose

Left whiskering of an oplax natural transformation and a modification.

Equations
Instances For

    Right whiskering of an oplax natural transformation and a modification.

    Equations
    Instances For

      Associator for the vertical composition of oplax natural transformations.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Left unitor for the vertical composition of oplax natural transformations.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Right unitor for the vertical composition of oplax natural transformations.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.OplaxFunctor.bicategory_comp_naturality (B : Type u₁) [CategoryTheory.Bicategory B] (C : Type u₂) [CategoryTheory.Bicategory C] :
            ∀ {X Y Z : CategoryTheory.OplaxFunctor B C} (η : CategoryTheory.OplaxNatTrans X Y) (θ : CategoryTheory.OplaxNatTrans Y Z) {a b : B} (f : a b), (CategoryTheory.CategoryStruct.comp η θ).naturality f = CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator ((X.toPrelaxFunctor).map f) (η.app b) (θ.app b)).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (η.naturality f) (θ.app b)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (η.app a) ((Y.toPrelaxFunctor).map f) (θ.app b)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (η.app a) (θ.naturality f)) (CategoryTheory.Bicategory.associator (η.app a) (θ.app a) ((Z.toPrelaxFunctor).map f)).inv)))

            A bicategory structure on the oplax functors between bicategories.

            Equations
            • One or more equations did not get rendered due to their size.