Documentation

Mathlib.CategoryTheory.Category.Factorisation

The Factorisation Category of a Category #

Factorisation f is the category containing as objects all factorisations of a morphism f.

We show that Factorisation f always has an initial and a terminal object.

TODO: Show that Factorisation f is isomorphic to a comma category in two ways.

TODO: Make MonoFactorisation f a special case of a Factorisation f.

structure CategoryTheory.Factorisation {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (f : X Y) :
Type (max u v)

Factorisations of a morphism f as a structure, containing, one object, two morphisms, and the condition that their composition equals f.

  • mid : C

    The midpoint of the factorisation.

  • ι : X self.mid

    The morphism into the factorisation midpoint.

  • π : self.mid Y

    The morphism out of the factorisation midpoint.

  • ι_π : CategoryTheory.CategoryStruct.comp self self = f

    The factorisation condition.

Instances For
    theorem CategoryTheory.Factorisation.Hom.ext {C : Type u} :
    ∀ {inst : CategoryTheory.Category.{v, u} C} {X Y : C} {f : X Y} {d e : CategoryTheory.Factorisation f} (x y : CategoryTheory.Factorisation.Hom d e), x.h = y.hx = y

    Morphisms of Factorisation f consist of morphism between their midpoints and the obvious commutativity conditions.

    Instances For
      Equations
      • CategoryTheory.Factorisation.instCategoryFactorisation = CategoryTheory.Category.mk
      @[simp]
      theorem CategoryTheory.Factorisation.initial_mid {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
      CategoryTheory.Factorisation.initial.mid = X
      @[simp]
      theorem CategoryTheory.Factorisation.initial_π {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
      CategoryTheory.Factorisation.initial = f
      @[simp]
      theorem CategoryTheory.Factorisation.initial_ι {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
      CategoryTheory.Factorisation.initial = CategoryTheory.CategoryStruct.id X

      The initial object in Factorisation f, with the domain of f as its midpoint.

      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        @[simp]
        theorem CategoryTheory.Factorisation.terminal_mid {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
        CategoryTheory.Factorisation.terminal.mid = Y
        @[simp]
        theorem CategoryTheory.Factorisation.terminal_ι {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
        CategoryTheory.Factorisation.terminal = f
        @[simp]
        theorem CategoryTheory.Factorisation.terminal_π {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
        CategoryTheory.Factorisation.terminal = CategoryTheory.CategoryStruct.id Y

        The terminal object in Factorisation f, with the codomain of f as its midpoint.

        Equations
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          def CategoryTheory.Factorisation.IsInitial_initial {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
          CategoryTheory.Limits.IsInitial CategoryTheory.Factorisation.initial

          The initial factorisation is an initial object

          Equations
          Instances For
            def CategoryTheory.Factorisation.IsTerminal_terminal {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
            CategoryTheory.Limits.IsTerminal CategoryTheory.Factorisation.terminal

            The terminal factorisation is a terminal object

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Factorisation.forget_obj {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} (self : CategoryTheory.Factorisation f) :
              CategoryTheory.Factorisation.forget.toPrefunctor.obj self = self.mid
              @[simp]
              theorem CategoryTheory.Factorisation.forget_map {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {f : X Y} :
              ∀ {X_1 Y_1 : CategoryTheory.Factorisation f} (f_1 : X_1 Y_1), CategoryTheory.Factorisation.forget.toPrefunctor.map f_1 = f_1.h

              The forgetful functor from Factorisation f to the underlying category C.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For