Documentation

Mathlib.CategoryTheory.Comma.StructuredArrow

The category of "structured arrows" #

For T : C ā„¤ D, a T-structured arrow with source S : D is just a morphism S āŸ¶ T.obj Y, for some Y : C.

These form a category with morphisms g : Y āŸ¶ Y' making the obvious diagram commute.

We prove that šŸ™ (T.obj Y) is the initial object in T-structured objects with source T.obj Y.

The category of T-structured arrows with domain S : D (here T : C ā„¤ D), has as its objects D-morphisms of the form S āŸ¶ T Y, for some Y : C, and morphisms C-morphisms Y āŸ¶ Y' making the obvious triangle commute.

Equations
Instances For

    Construct a structured arrow from a morphism.

    Equations
    Instances For

      To construct a morphism of structured arrows, we need a morphism of the objects underlying the target, and to check that the triangle commutes.

      Equations
      Instances For

        Given a structured arrow X āŸ¶ T(Y), and an arrow Y āŸ¶ Y', we can construct a morphism of structured arrows given by (X āŸ¶ T(Y)) āŸ¶ (X āŸ¶ T(Y) āŸ¶ T(Y')).

        Equations
        Instances For
          @[simp]
          @[simp]
          theorem CategoryTheory.StructuredArrow.isoMk_hom_left_down_down {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {S : D} {T : CategoryTheory.Functor C D} {f : CategoryTheory.StructuredArrow S T} {f' : CategoryTheory.StructuredArrow S T} (g : f.right ā‰… f'.right) (w : autoParam (CategoryTheory.CategoryStruct.comp f.hom (T.toPrefunctor.map g.hom) = f'.hom) _autoāœ) :
          (_ : f'.left.as = f'.left.as) = (_ : f'.left.as = f'.left.as)
          @[simp]
          theorem CategoryTheory.StructuredArrow.isoMk_inv_left_down_down {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {S : D} {T : CategoryTheory.Functor C D} {f : CategoryTheory.StructuredArrow S T} {f' : CategoryTheory.StructuredArrow S T} (g : f.right ā‰… f'.right) (w : autoParam (CategoryTheory.CategoryStruct.comp f.hom (T.toPrefunctor.map g.hom) = f'.hom) _autoāœ) :
          (_ : f.left.as = f.left.as) = (_ : f.left.as = f.left.as)

          To construct an isomorphism of structured arrows, we need an isomorphism of the objects underlying the target, and to check that the triangle commutes.

          Equations
          Instances For

            The converse of this is true with additional assumptions, see mono_iff_mono_right.

            Eta rule for structured arrows. Prefer StructuredArrow.eta for rewriting, since equality of objects tends to cause problems.

            @[simp]
            theorem CategoryTheory.StructuredArrow.eta_inv_left_down_down {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {S : D} {T : CategoryTheory.Functor C D} (f : CategoryTheory.StructuredArrow S T) :
            (_ : f.left.as = f.left.as) = (_ : f.left.as = f.left.as)
            @[simp]
            theorem CategoryTheory.StructuredArrow.map_map_right {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {S : D} {S' : D} {T : CategoryTheory.Functor C D} (f : S āŸ¶ S') :
            āˆ€ {X Y : CategoryTheory.Comma (CategoryTheory.Functor.fromPUnit S') T} (f_1 : X āŸ¶ Y), ((CategoryTheory.StructuredArrow.map f).toPrefunctor.map f_1).right = f_1.right

            A morphism between source objects S āŸ¶ S' contravariantly induces a functor between structured arrows, StructuredArrow S' T ā„¤ StructuredArrow S T.

            Ideally this would be described as a 2-functor from D (promoted to a 2-category with equations as 2-morphisms) to Cat.

            Equations
            Instances For

              The identity structured arrow is initial.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                The functor (S, F) ā„¤ (G(S), F ā‹™ G).

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[inline, reducible]

                  A structured arrow is called universal if it is initial.

                  Equations
                  Instances For
                    theorem CategoryTheory.StructuredArrow.IsUniversal.hom_ext {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {S : D} {T : CategoryTheory.Functor C D} {f : CategoryTheory.StructuredArrow S T} (h : CategoryTheory.StructuredArrow.IsUniversal f) {c : C} {Ī· : f.right āŸ¶ c} {Ī·' : f.right āŸ¶ c} (w : CategoryTheory.CategoryStruct.comp f.hom (T.toPrefunctor.map Ī·) = CategoryTheory.CategoryStruct.comp f.hom (T.toPrefunctor.map Ī·')) :
                    Ī· = Ī·'

                    Two morphisms out of a universal T-structured arrow are equal if their image under T are equal after precomposing the universal arrow.

                    The category of S-costructured arrows with target T : D (here S : C ā„¤ D), has as its objects D-morphisms of the form S Y āŸ¶ T, for some Y : C, and morphisms C-morphisms Y āŸ¶ Y' making the obvious triangle commute.

                    Equations
                    Instances For

                      Construct a costructured arrow from a morphism.

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.CostructuredArrow.homMk_right_down_down {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {T : D} {S : CategoryTheory.Functor C D} {f : CategoryTheory.CostructuredArrow S T} {f' : CategoryTheory.CostructuredArrow S T} (g : f.left āŸ¶ f'.left) (w : autoParam (CategoryTheory.CategoryStruct.comp (S.toPrefunctor.map g) f'.hom = f.hom) _autoāœ) :
                        (_ : f.right.as = f.right.as) = (_ : f.right.as = f.right.as)

                        To construct a morphism of costructured arrows, we need a morphism of the objects underlying the source, and to check that the triangle commutes.

                        Equations
                        Instances For

                          Given a costructured arrow S(Y) āŸ¶ X, and an arrow Y' āŸ¶ Y', we can construct a morphism of costructured arrows given by (S(Y) āŸ¶ X) āŸ¶ (S(Y') āŸ¶ S(Y) āŸ¶ X).

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]

                            Variant of homMk' where both objects are applications of mk.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.CostructuredArrow.isoMk_hom_right_down_down {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {T : D} {S : CategoryTheory.Functor C D} {f : CategoryTheory.CostructuredArrow S T} {f' : CategoryTheory.CostructuredArrow S T} (g : f.left ā‰… f'.left) (w : autoParam (CategoryTheory.CategoryStruct.comp (S.toPrefunctor.map g.hom) f'.hom = f.hom) _autoāœ) :
                              (_ : f'.right.as = f'.right.as) = (_ : f'.right.as = f'.right.as)
                              @[simp]
                              theorem CategoryTheory.CostructuredArrow.isoMk_inv_right_down_down {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {T : D} {S : CategoryTheory.Functor C D} {f : CategoryTheory.CostructuredArrow S T} {f' : CategoryTheory.CostructuredArrow S T} (g : f.left ā‰… f'.left) (w : autoParam (CategoryTheory.CategoryStruct.comp (S.toPrefunctor.map g.hom) f'.hom = f.hom) _autoāœ) :
                              (_ : f.right.as = f.right.as) = (_ : f.right.as = f.right.as)

                              To construct an isomorphism of costructured arrows, we need an isomorphism of the objects underlying the source, and to check that the triangle commutes.

                              Equations
                              Instances For

                                The converse of this is true with additional assumptions, see epi_iff_epi_left.

                                Eta rule for costructured arrows. Prefer CostructuredArrow.eta for rewriting, as equality of objects tends to cause problems.

                                @[simp]
                                theorem CategoryTheory.CostructuredArrow.eta_inv_right_down_down {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {T : D} {S : CategoryTheory.Functor C D} (f : CategoryTheory.CostructuredArrow S T) :
                                (_ : f.right.as = f.right.as) = (_ : f.right.as = f.right.as)

                                A morphism between target objects T āŸ¶ T' covariantly induces a functor between costructured arrows, CostructuredArrow S T ā„¤ CostructuredArrow S T'.

                                Ideally this would be described as a 2-functor from D (promoted to a 2-category with equations as 2-morphisms) to Cat.

                                Equations
                                Instances For

                                  The identity costructured arrow is terminal.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For

                                    The functor (F, S) ā„¤ (F ā‹™ G, G(S)).

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      @[inline, reducible]

                                      A costructured arrow is called universal if it is terminal.

                                      Equations
                                      Instances For
                                        theorem CategoryTheory.CostructuredArrow.IsUniversal.hom_ext {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {T : D} {S : CategoryTheory.Functor C D} {f : CategoryTheory.CostructuredArrow S T} (h : CategoryTheory.CostructuredArrow.IsUniversal f) {c : C} {Ī· : c āŸ¶ f.left} {Ī·' : c āŸ¶ f.left} (w : CategoryTheory.CategoryStruct.comp (S.toPrefunctor.map Ī·) f.hom = CategoryTheory.CategoryStruct.comp (S.toPrefunctor.map Ī·') f.hom) :
                                        Ī· = Ī·'

                                        Two morphisms into a universal S-costructured arrow are equal if their image under S are equal after postcomposing the universal arrow.

                                        @[simp]
                                        theorem CategoryTheory.Functor.toStructuredArrow_obj {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (X : D) (F : CategoryTheory.Functor C D) (f : (Y : E) ā†’ X āŸ¶ F.toPrefunctor.obj (G.toPrefunctor.obj Y)) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (f Y) (F.toPrefunctor.map (G.toPrefunctor.map g)) = f Z) (Y : E) :
                                        @[simp]
                                        theorem CategoryTheory.Functor.toStructuredArrow_map {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (X : D) (F : CategoryTheory.Functor C D) (f : (Y : E) ā†’ X āŸ¶ F.toPrefunctor.obj (G.toPrefunctor.obj Y)) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (f Y) (F.toPrefunctor.map (G.toPrefunctor.map g)) = f Z) :
                                        āˆ€ {X_1 Y : E} (g : X_1 āŸ¶ Y), (CategoryTheory.Functor.toStructuredArrow G X F f h).toPrefunctor.map g = CategoryTheory.StructuredArrow.homMk (G.toPrefunctor.map g)
                                        def CategoryTheory.Functor.toStructuredArrow {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (X : D) (F : CategoryTheory.Functor C D) (f : (Y : E) ā†’ X āŸ¶ F.toPrefunctor.obj (G.toPrefunctor.obj Y)) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (f Y) (F.toPrefunctor.map (G.toPrefunctor.map g)) = f Z) :

                                        Given X : D and F : C ā„¤ D, to upgrade a functor G : E ā„¤ C to a functor E ā„¤ StructuredArrow X F, it suffices to provide maps X āŸ¶ F.obj (G.obj Y) for all Y making the obvious triangles involving all F.map (G.map g) commute.

                                        This is of course the same as providing a cone over F ā‹™ G with cone point X, see Functor.toStructuredArrowIsoToStructuredArrow.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          def CategoryTheory.Functor.toStructuredArrowCompProj {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (X : D) (F : CategoryTheory.Functor C D) (f : (Y : E) ā†’ X āŸ¶ F.toPrefunctor.obj (G.toPrefunctor.obj Y)) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (f Y) (F.toPrefunctor.map (G.toPrefunctor.map g)) = f Z) :
                                          CategoryTheory.Functor.comp (CategoryTheory.Functor.toStructuredArrow G X F f (_ : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (f Y) (F.toPrefunctor.map (G.toPrefunctor.map g)) = f Z)) (CategoryTheory.StructuredArrow.proj X F) ā‰… G

                                          Upgrading a functor E ā„¤ C to a functor E ā„¤ StructuredArrow X F and composing with the forgetful functor StructuredArrow X F ā„¤ C recovers the original functor.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Functor.toStructuredArrow_comp_proj {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (X : D) (F : CategoryTheory.Functor C D) (f : (Y : E) ā†’ X āŸ¶ F.toPrefunctor.obj (G.toPrefunctor.obj Y)) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (f Y) (F.toPrefunctor.map (G.toPrefunctor.map g)) = f Z) :
                                            CategoryTheory.Functor.comp (CategoryTheory.Functor.toStructuredArrow G X F f (_ : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (f Y) (F.toPrefunctor.map (G.toPrefunctor.map g)) = f Z)) (CategoryTheory.StructuredArrow.proj X F) = G
                                            @[simp]
                                            theorem CategoryTheory.Functor.toCostructuredArrow_obj {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (F : CategoryTheory.Functor C D) (X : D) (f : (Y : E) ā†’ F.toPrefunctor.obj (G.toPrefunctor.obj Y) āŸ¶ X) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (G.toPrefunctor.map g)) (f Z) = f Y) (Y : E) :
                                            @[simp]
                                            theorem CategoryTheory.Functor.toCostructuredArrow_map {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (F : CategoryTheory.Functor C D) (X : D) (f : (Y : E) ā†’ F.toPrefunctor.obj (G.toPrefunctor.obj Y) āŸ¶ X) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (G.toPrefunctor.map g)) (f Z) = f Y) :
                                            āˆ€ {X_1 Y : E} (g : X_1 āŸ¶ Y), (CategoryTheory.Functor.toCostructuredArrow G F X f h).toPrefunctor.map g = CategoryTheory.CostructuredArrow.homMk (G.toPrefunctor.map g)
                                            def CategoryTheory.Functor.toCostructuredArrow {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (F : CategoryTheory.Functor C D) (X : D) (f : (Y : E) ā†’ F.toPrefunctor.obj (G.toPrefunctor.obj Y) āŸ¶ X) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (G.toPrefunctor.map g)) (f Z) = f Y) :

                                            Given F : C ā„¤ D and X : D, to upgrade a functor G : E ā„¤ C to a functor E ā„¤ CostructuredArrow F X, it suffices to provide maps F.obj (G.obj Y) āŸ¶ X for all Y making the obvious triangles involving all F.map (G.map g) commute.

                                            This is of course the same as providing a cocone over F ā‹™ G with cocone point X, see Functor.toCostructuredArrowIsoToCostructuredArrow.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              def CategoryTheory.Functor.toCostructuredArrowCompProj {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (F : CategoryTheory.Functor C D) (X : D) (f : (Y : E) ā†’ F.toPrefunctor.obj (G.toPrefunctor.obj Y) āŸ¶ X) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (G.toPrefunctor.map g)) (f Z) = f Y) :
                                              CategoryTheory.Functor.comp (CategoryTheory.Functor.toCostructuredArrow G F X f (_ : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (G.toPrefunctor.map g)) (f Z) = f Y)) (CategoryTheory.CostructuredArrow.proj F X) ā‰… G

                                              Upgrading a functor E ā„¤ C to a functor E ā„¤ CostructuredArrow F X and composing with the forgetful functor CostructuredArrow F X ā„¤ C recovers the original functor.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                @[simp]
                                                theorem CategoryTheory.Functor.toCostructuredArrow_comp_proj {C : Type uā‚} [CategoryTheory.Category.{vā‚, uā‚} C] {D : Type uā‚‚} [CategoryTheory.Category.{vā‚‚, uā‚‚} D] {E : Type uā‚ƒ} [CategoryTheory.Category.{vā‚ƒ, uā‚ƒ} E] (G : CategoryTheory.Functor E C) (F : CategoryTheory.Functor C D) (X : D) (f : (Y : E) ā†’ F.toPrefunctor.obj (G.toPrefunctor.obj Y) āŸ¶ X) (h : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (G.toPrefunctor.map g)) (f Z) = f Y) :
                                                CategoryTheory.Functor.comp (CategoryTheory.Functor.toCostructuredArrow G F X f (_ : āˆ€ {Y Z : E} (g : Y āŸ¶ Z), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (G.toPrefunctor.map g)) (f Z) = f Y)) (CategoryTheory.CostructuredArrow.proj F X) = G

                                                For a functor F : C ā„¤ D and an object d : D, we obtain a contravariant functor from the category of structured arrows d āŸ¶ F.obj c to the category of costructured arrows F.op.obj c āŸ¶ (op d).

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For

                                                  For a functor F : C ā„¤ D and an object d : D, we obtain a contravariant functor from the category of structured arrows op d āŸ¶ F.op.obj c to the category of costructured arrows F.obj c āŸ¶ d.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    For a functor F : C ā„¤ D and an object d : D, we obtain a contravariant functor from the category of costructured arrows F.obj c āŸ¶ d to the category of structured arrows op d āŸ¶ F.op.obj c.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For

                                                      For a functor F : C ā„¤ D and an object d : D, we obtain a contravariant functor from the category of costructured arrows F.op.obj c āŸ¶ op d to the category of structured arrows d āŸ¶ F.obj c.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For

                                                        For a functor F : C ā„¤ D and an object d : D, the category of structured arrows d āŸ¶ F.obj c is contravariantly equivalent to the category of costructured arrows F.op.obj c āŸ¶ op d.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For

                                                          For a functor F : C ā„¤ D and an object d : D, the category of costructured arrows F.obj c āŸ¶ d is contravariantly equivalent to the category of structured arrows op d āŸ¶ F.op.obj c.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For