Documentation

Mathlib.CategoryTheory.ConcreteCategory.Elementwise

In this file we provide various simp lemmas in its elementwise form via Tactic.Elementwise.

@[simp]
@[simp]
theorem CategoryTheory.Limits.Cone.w_apply {J : Type u₁} [CategoryTheory.Category.{v₁, u₁} J] {C : Type u₃} [CategoryTheory.Category.{v₃, u₃} C] {F : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cone F) {j : J} {j' : J} (f : j j') [inst : CategoryTheory.ConcreteCategory C] (x : (CategoryTheory.forget C).toPrefunctor.obj (((CategoryTheory.Functor.const J).toPrefunctor.obj c.pt).toPrefunctor.obj j)) :
(F.toPrefunctor.map f) ((c.app j) x) = (c.app j') x
@[simp]
theorem CategoryTheory.Limits.colimit.w_apply {J : Type u₁} [CategoryTheory.Category.{v₁, u₁} J] {C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.HasColimit F] {j : J} {j' : J} (f : j j') [inst : CategoryTheory.ConcreteCategory C] (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) :
(CategoryTheory.Limits.colimit.ι F j') ((F.toPrefunctor.map f) x) = (CategoryTheory.Limits.colimit.ι F j) x
theorem CategoryTheory.Limits.Cocone.w_apply {J : Type u₁} [CategoryTheory.Category.{v₁, u₁} J] {C : Type u₃} [CategoryTheory.Category.{v₃, u₃} C] {F : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cocone F) {j : J} {j' : J} (f : j j') [inst : CategoryTheory.ConcreteCategory C] (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) :
(c.app j') ((F.toPrefunctor.map f) x) = (c.app j) x