Documentation

Mathlib.CategoryTheory.Conj

Conjugate morphisms by isomorphisms #

An isomorphism α : X ≅ Y defines

For completeness, we also define CategoryTheory.Iso.homCongr : (X ≅ X₁) → (Y ≅ Y₁) → (X ⟶ Y) ≃ (X₁ ⟶ Y₁), cf. Equiv.arrowCongr.

def CategoryTheory.Iso.homCongr {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) :
(X Y) (X₁ Y₁)

If X is isomorphic to X₁ and Y is isomorphic to Y₁, then there is a natural bijection between X ⟶ Y and X₁ ⟶ Y₁. See also Equiv.arrowCongr.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Iso.homCongr_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) (f : X Y) :
    theorem CategoryTheory.Iso.homCongr_comp {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X₁ : C} {Y₁ : C} {Z₁ : C} (α : X X₁) (β : Y Y₁) (γ : Z Z₁) (f : X Y) (g : Y Z) :
    theorem CategoryTheory.Iso.homCongr_trans {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {Y₁ : C} {X₂ : C} {Y₂ : C} {X₃ : C} {Y₃ : C} (α₁ : X₁ X₂) (β₁ : Y₁ Y₂) (α₂ : X₂ X₃) (β₂ : Y₂ Y₃) (f : X₁ Y₁) :
    (CategoryTheory.Iso.homCongr (α₁ ≪≫ α₂) (β₁ ≪≫ β₂)) f = ((CategoryTheory.Iso.homCongr α₁ β₁).trans (CategoryTheory.Iso.homCongr α₂ β₂)) f
    @[simp]
    theorem CategoryTheory.Iso.homCongr_symm {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {Y₁ : C} {X₂ : C} {Y₂ : C} (α : X₁ X₂) (β : Y₁ Y₂) :

    An isomorphism between two objects defines a monoid isomorphism between their monoid of endomorphisms.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Iso.trans_conj {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} (α : X Y) {Z : C} (β : Y Z) (f : CategoryTheory.End X) :

      conj defines a group isomorphisms between groups of automorphisms

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Functor.map_homCongr {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₁} [CategoryTheory.Category.{v₁, u₁} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) (f : X Y) :
        F.toPrefunctor.map ((CategoryTheory.Iso.homCongr α β) f) = (CategoryTheory.Iso.homCongr (F.mapIso α) (F.mapIso β)) (F.toPrefunctor.map f)
        theorem CategoryTheory.Functor.map_conj {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₁} [CategoryTheory.Category.{v₁, u₁} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (α : X Y) (f : CategoryTheory.End X) :
        F.toPrefunctor.map ((CategoryTheory.Iso.conj α) f) = (CategoryTheory.Iso.conj (F.mapIso α)) (F.toPrefunctor.map f)